网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
单晶镍拉伸行为的分子动力学仿真
英文标题:Molecular dynamics simulation on tensile behavior of single-crystal nickel
作者:耿永祥1 2 吴荣达1 2 吴韦莉1 2 郑海忠1 2 李贵发1 2 肖怡新1 2  曹新鹏1 2 易嘉豪1 2 
单位:1. 南昌航空大学 南昌市耐磨耐损构件先进表面激光处理重点实验室  2. 南昌航空大学 材料科学与工程学院 
关键词:单晶镍 分子动力学 拉伸行为 晶向 孔洞缺陷 
分类号:TG132.3
出版年,卷(期):页码:2024,49(4):202-213
摘要:

 为了研究单晶镍的拉伸行为,采用LAMMPS分子动力学软件模拟分析了拉伸温度(300、600和900 K)、晶向([100]、[110]、[111])以及孔洞的缺陷数量(0、1、3)和直径(0.2a、0.4a、0.6a)对单晶镍拉伸行为的影响规律。结果表明:拉伸温度和晶向影响单晶镍的塑性变形方式,而孔洞的缺陷数量和直径影响单晶镍的力学性能。随着拉伸温度的增加,单晶镍的塑性变形方式由相变和层错为主转变为单一的层错变形方式;在[100]晶向上,单晶镍的塑性变形方式以相变和层错为主,而在[110]和[111]晶向上,则以层错为主;与孔洞缺陷数量相比,孔洞缺陷直径对单晶镍的力学性能影响较大,孔洞缺陷的存在致使单晶镍主要以层错形式发生塑性变形,且层错沿与拉伸方向成45°或135°的方向扩展。

 In order to investigate the tensile behavior of single-crystal nickel, the influence laws of tensile temperature (300, 600 and 900 K), crystal orientation ([100], [110] and [111]), number (0, 1 and 3) and diameter (0.2a, 0.4a and 0.6a) of hole defects on its tensile behavior was simulated and analyzed by LAMMPS molecular dynamics software. The results show that the tensile temperature and crystal orientation affect the plastic deformation mode of single-crystal nickel, while the number and diameter of hole defects affect the mechanical properties of single-crystal nickel. As the tensile temperature increases, the plastic deformation mode of single-crystal nickel changes from phase transformation and layer fault to a single layer fault deformation mode. The plastic deformation mode of single-crystal nickel in [100] crystal orientation is dominated by phase transformation and layer fault, while it is dominated by layer fault both in [110] and [111] crystal orientations. Compared with the number of hole defect, the diameter of hole defect has a greater influence on the mechanical properties of single-crystal nickel. The existence of hole defects causes the plastic deformation of single-crystal nickel mainly in the form of layer fault, which extend along the direction of 45° or 135° with the tensile direction.

基金项目:
江西省重点研发计划(20223BBE51005);江西省自然(青年)科学基金资助项目(20212BAB214037);国家自然科学基金资助项目(52271076,52271057,52071172,51361026)
作者简介:
作者简介:耿永祥(1987-),男,博士,讲师 E-mail:geng2011@yeah.net 通信作者:郑海忠(1976-),男,博士,教授 E-mail:zhznchu@126.com
参考文献:

 [1]陈晶晶,邱小林,李柯,等. 磨粒刮擦诱导单晶镍微结构演化与塑性去除行为的纳观分析[J]. 材料研究学报,2022,36(7):511-518.


 

Chen J J, Qiu X L, Li K, et al. Microstructure evolution and plastic removal for single crystal nickel induced by particle scratching: Atomic simulation method[J]. Chinese Journal of Materials Research, 2022, 36(7):511-518.

 

[2]陈忠,田庚方,李天富,等. 镍基单晶高温合金γ基体相通道研究[J/OL]. 热加工工艺,2024,(6):88-92[2024-03-26].https://doi.org/10.14158/j.cnki.1001-3814.20230440.

 

Chen Z, Tian G F, Li T F, et al. Syudy on γ matrix phase channels in nickel-based single crystal superalloy[J/OL]. Hot Working Technology,2024, (6): 88-92[2024-03-26]. https://doi.org/10.14158/j.cnki.1001-3814.20230440.

[3]任潇一,吕俊霞,周建力,等. 两种取向镍基单晶高温合金拉伸变形行为原位研究[J]. 电子显微学报,2023,42(2): 129-136.

 

Ren X Y, Lyu J X, Zhou J L, et al. In-situ study of tensile deformation behavior of nickel-based single crystal superalloys with two different orientations[J]. Journal of Chinese Electron Microscopy Society, 2023, 42(2):129-136.

 

[4]Li Y Y, Chen H, Chen Y T, et al. Point defect effects on tensile strength of α-zirconium studied by molecular dynamics simulations[J]. Nuclear Materials and Energy, 2019, 20:100683.

 

[5]Chang L, Zhou C Y, Liu H X, et al. Orientation and strain rate dependent tensile behavior of single crystal titanium nanowires by molecular dynamics simulations[J]. Journal of Materials Science & Technology, 2018, 34(5):864-877.

 

[6]Fazeli S, Vahedpour M, Sadrnezhaad S K, et al. Effect of copper content on tensile mechanical properties of ternary NiTiCu alloy nanowire: Molecular dynamics simulation[J]. Materials Today: Proceedings, 2018, 5(1):1552-1555.

 

[7]薛春,杨千华,楚志兵,等. 温度对单晶镁拉伸性能影响的分子动力学研究[J]. 稀有金属材料与工程,2021,50(5): 1812-1816.

 

Xue C, Yang Q H, Chu Z B, et al. Molecular dynamics study of the influence of temperature on tensile properties of single crystal magnesium[J]. Rare Metal Materials and Engineering, 2021, 50(5):1812-1816.

 

[8]Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloy[J]. Physical Review B, 1986, 33(12):7983-7991.

 

[9]Stukowski A. Structure identification methods for atomistic simulations of crystalline materials[J]. Modelling Simulation in Materials Science Engineering, 2012, 20:045021.

 

[10]Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data[J]. Modeling Simulation in Materials Science Engineering, 2010, 18:085001.

 

[11]Sun Y Z, Zheng H Z, Geng Y X, et al. Molecular dynamics simulations of warm laser shock peening for monocrystalline nickel[J]. Materials Today Communications, 2023, 35:105626.

 

[12]Liu H X, Zhang Y F, Ma Y J, et al. Molecular dynamics simulation of nanostructure formation in copper foil under laser shock forming[J]. Computational Materials Science, 2020, 172: 109352.

 

[13]Yan Z G, Lin Y J. Lomer-Cottrell locks with multiple stair-rod dislocations in a nanostructured Al alloy processed by severe plastic deformation[J]. Materials Science and Engineering: A, 2019, 747:177-184.

 

[14]杜春志,庞帅,吴文平,等. 单晶Ni3Al裂纹扩展行为的分子动力学模拟[J].锻压技术,2023,48(7):255-263.

 

Du C Z, Pang S, Wu W P, et al. Molecular dynamics simulation on crack propagation behavior for single crystal Ni3Al[J]. Forging & Stamping Technology, 2023, 48(7): 255-263.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9