[1]陈晶晶,邱小林,李柯,等. 磨粒刮擦诱导单晶镍微结构演化与塑性去除行为的纳观分析[J]. 材料研究学报,2022,36(7):511-518.
Chen J J, Qiu X L, Li K, et al. Microstructure evolution and plastic removal for single crystal nickel induced by particle scratching: Atomic simulation method[J]. Chinese Journal of Materials Research, 2022, 36(7):511-518.
[2]陈忠,田庚方,李天富,等. 镍基单晶高温合金γ基体相通道研究[J/OL]. 热加工工艺,2024,(6):88-92[2024-03-26].https://doi.org/10.14158/j.cnki.1001-3814.20230440.
Chen Z, Tian G F, Li T F, et al. Syudy on γ matrix phase channels in nickel-based single crystal superalloy[J/OL]. Hot Working Technology,2024, (6): 88-92[2024-03-26]. https://doi.org/10.14158/j.cnki.1001-3814.20230440.
[3]任潇一,吕俊霞,周建力,等. 两种取向镍基单晶高温合金拉伸变形行为原位研究[J]. 电子显微学报,2023,42(2): 129-136.
Ren X Y, Lyu J X, Zhou J L, et al. In-situ study of tensile deformation behavior of nickel-based single crystal superalloys with two different orientations[J]. Journal of Chinese Electron Microscopy Society, 2023, 42(2):129-136.
[4]Li Y Y, Chen H, Chen Y T, et al. Point defect effects on tensile strength of α-zirconium studied by molecular dynamics simulations[J]. Nuclear Materials and Energy, 2019, 20:100683.
[5]Chang L, Zhou C Y, Liu H X, et al. Orientation and strain rate dependent tensile behavior of single crystal titanium nanowires by molecular dynamics simulations[J]. Journal of Materials Science & Technology, 2018, 34(5):864-877.
[6]Fazeli S, Vahedpour M, Sadrnezhaad S K, et al. Effect of copper content on tensile mechanical properties of ternary NiTiCu alloy nanowire: Molecular dynamics simulation[J]. Materials Today: Proceedings, 2018, 5(1):1552-1555.
[7]薛春,杨千华,楚志兵,等. 温度对单晶镁拉伸性能影响的分子动力学研究[J]. 稀有金属材料与工程,2021,50(5): 1812-1816.
Xue C, Yang Q H, Chu Z B, et al. Molecular dynamics study of the influence of temperature on tensile properties of single crystal magnesium[J]. Rare Metal Materials and Engineering, 2021, 50(5):1812-1816.
[8]Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloy[J]. Physical Review B, 1986, 33(12):7983-7991.
[9]Stukowski A. Structure identification methods for atomistic simulations of crystalline materials[J]. Modelling Simulation in Materials Science Engineering, 2012, 20:045021.
[10]Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data[J]. Modeling Simulation in Materials Science Engineering, 2010, 18:085001.
[11]Sun Y Z, Zheng H Z, Geng Y X, et al. Molecular dynamics simulations of warm laser shock peening for monocrystalline nickel[J]. Materials Today Communications, 2023, 35:105626.
[12]Liu H X, Zhang Y F, Ma Y J, et al. Molecular dynamics simulation of nanostructure formation in copper foil under laser shock forming[J]. Computational Materials Science, 2020, 172: 109352.
[13]Yan Z G, Lin Y J. Lomer-Cottrell locks with multiple stair-rod dislocations in a nanostructured Al alloy processed by severe plastic deformation[J]. Materials Science and Engineering: A, 2019, 747:177-184.
[14]杜春志,庞帅,吴文平,等. 单晶Ni3Al裂纹扩展行为的分子动力学模拟[J].锻压技术,2023,48(7):255-263.
Du C Z, Pang S, Wu W P, et al. Molecular dynamics simulation on crack propagation behavior for single crystal Ni3Al[J]. Forging & Stamping Technology, 2023, 48(7): 255-263.
|