网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于有限元的1600 mm辊锻机卸荷套结构优化
英文标题:Structure optimization of unloading sleeve for 1600 mm roll-forging machine based on finite element
作者:李海涛 杨勇 张艳朝 徐超 陈宪明 高远 张彬成 
单位:中国机械总院集团北京机电研究所有限公司 
关键词:卸荷套 多目标优化 静态分析 灵敏度分析 轻量化 
分类号:TH122
出版年,卷(期):页码:2024,49(6):184-188
摘要:

以1600 mm辊锻机卸荷套为研究对象,为满足初始静态刚度条件下的轻量化要求,提出以质量和总变形量为目标函数的多目标优化设计方法。将三维模型导入CAE软件中建立有限元模型,并进行静力学计算,得到最大等效应力为74.735 MPa、最大变形量为0.16299 mm。通过响应面优化选择参数并确定其数值区间,选用中心复合试验方法生成试验设计表,并根据试验点和标准响应面法建立设计变量与目标函数的响应面。使用多目标遗传算法对卸荷套的质量和最大变形量进行优化,并根据设计要求和实际经验,选择候选组Ⅲ为最优结果。结合灵敏度分析,对计算的优化结果进行修正,修正后的卸荷套的刚度提升了0.8%,最大等效应力减少了24%,卸荷套质量减少了8.6%,综合质量减少了27.8%,满足轻量化要求。

For the unloading sleeve of 1600 mm roll-forging machine, in order to meet the lightweight requirements under the condition of initial static stiffness, a multi-objective optimization design method taking mass and total deformation amount as objective functions was proposed. Then, the 3D model was imported into CAE software to establish the finite element model,and the static calculation was carried out to obtain the maximum equivalent stress of 74.735 MPa and the maximum deformation amount of 0.16299 mm. Furthermore, the parameters were selected by the response surface optimization to determine their value range, the test design table was generated through the central composite test method, and the response surface of design variables and objective functions according to the test points and the standard response surface method was established.Then the mass and maximum deformation amount of unloading sleeve was optimized by using the multi-objective genetic algorithm. According to the design requirements and practical experience, the candidate group Ⅲ was selected as the optimization result. And the calculated optimization result was modified by combining the sensitivity analysis. After the modification of unloading sleeve,the stiffness is increased by 0.8%, the maximum equivalent stress is reduced by 24%, the mass of unloading sleeve is reduced by 8.6%, and the comprehensive mass is reduced by 27.8%, meeting the requirements of lightweight. 

基金项目:
作者简介:
作者简介:李海涛(1980-),男,学士,高级工程师,E-mail:lihaitao1209@163.com
参考文献:

[1]张承鉴.辊锻技术[M].北京:机械工业出版社,1986.


Zhang C J. Roll Forging Technology [M]. Beijing: China Machine Press,1986.

[2]龚立巍,袁佳骏,许楠.卸荷套在曲柄压力机中的作用分析[J].锻压装备与制造技术,2021,56(4):55-57.

Gong L W,Yuan J J,Xu N. Analysis on the function of unloading sleeve in crank press[J]. China Metalforming Equipment & Manufacturing Technology,2021,56(4):55-57.

[3]石一磬,杨勇,李海涛,等.1600 mm辊锻机及其在轨道交通用车轴生产中的应用[J].锻压技术,2022,47(6):209-213.

Shi Y Q,Yang Y,Li H T. 1600 mm roll forging machine and its application in production of axles used in rail transit[J]. Forging & Stamping Technology, 2022,47(6):209-213.

[4]成大先.机械设计手册:第3卷[M].6版.北京:化学工业出版社,2016.

Chen D X. Handbook of Mechanical Design:Volume 3[M]. 6th Edition. Beijing: Chemical Industry Press,2016.

[5]王俊, 刘祥, 庞秋. 伺服机械压力机机身结构优化设计分析[J]. 精密成形工程, 2022, 14(7): 136-142.

Wang J, Liu X, Pang Q. Optimization design and analysis of servo mechanical press frame structure [J]. Journal of Netshape Forming Engineering,2022, 14(7): 136-142.

[6]于江, 邹宗园, 杜俊雷. 560 mm伺服辊锻机结构特点及有限元静力学分析[J]. 中国重型装备, 2018, (3): 22-27.

Yu J, Zou Z Y, Du J L. Structural characteristics and finite element statics analysis of 560 mm servo roll forging machine[J].China Heavy Equipment, 2018, (3): 22-27.

[7]姚寿文,崔红伟.机械结构优化设计[M].2版.北京:北京理工大学出版社,2018.

Yao S W,Cui H W. An Introduction to Mechanical Structure Optimization[M].2nd Edition. Beijing: Beijing Institute of Technology Press,2018.

[8]汪萍,侯慕英.机械优化设计 [M].4版.武汉:中国地质大学出版社有限责任公司,2013.

Wang P,Hou M Y. Mechanical Optimization Design [M]. 4th Edition.Wuhan: China University of Geosciences Press Co., Ltd.,2013.

[9]刘惟信.机械最优化设计[M].2版.北京:清华大学出版社,1994.

Liu W X.Mechanical Optimization Design[M].2nd Edition.Beijing:Tsinghua University Press,1994.

[10]Matteo S, Michele M, Andrea R. Optimized design of press frames with respect to energy efficiency[J]. Journal of Cleaner Production, 2013, 41: 140-149.

[11]Fu Y,Diwekar U.An efficient sampling approach to multi-objective optimization[J].Annals of Operations Research,2004,132(1-4):109-134.

[12]姜衡,管贻生,邱志成.基于响应面法的立式加工中心动静态多目标优化[J].机械工程学报,2011,47(11):125-133.

Jiang H,Guan Y S,Qiu Z C. Dynamic and static multi-objective optimization of a vertical machining center based on response surface method[J].Journal of Mechanical Engineering,2011,47(11):125-133.

[13]王登峰, 李慎华. 基于Pareto挖掘的白车身侧碰安全件轻量化优化设计 [J]. 中国机械工程, 2021, 32 (13): 1584 -1590, 1637.

Wang D F, Li S H. Lightweight optimization design of side collision safety parts for BIW based on Pareto mining [J]. China Mechanical Engineering, 2021, 32 (13): 1584-1590, 1637.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9