网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
稀土镁合金长程应变速率下室温形变机制
英文标题:Room temperature deformation mechanism of rare earth magnesium alloy under long-range strain rate
作者:韩陆依1 2 王广春1 2 
单位:1. 山东大学 金属成形高端装备与先进技术全国重点实验室 2. 山东大学 材料液固结构演变与加工教育部重点实验室 
关键词:Mg-Y-Nd-Zr-Gd合金 应变速率 力学性能 孪晶 滑移系 
分类号:TG30
出版年,卷(期):页码:2024,49(7):74-80
摘要:

 针对Mg-Y-Nd-Zr-Gd合金在室温条件下进行了常规应变速率(1×10-3~1 s-1)以及超高应变速率(>1×103 s-1)范围内的压缩形变测试,并对其力学响应以及微观组织演变进行了综合探究。结果显示,Mg-Y-Nd-Zr-Gd合金在两种应变速率范围内展现出迥异的形变特征。在常规应变速率范围内,不同应变速率下材料的力学性能特征相近,材料屈服之后加工硬化率持续下降。然而,当进入超高应变速率范围内时,材料的屈服点上升,并且加工硬化率出现平台并持续到材料断裂失效。常规应变速率下的主要形变机制为基面滑移以及拉伸孪晶,而超高应变速率下形变后出现大量的二次孪晶。通过IGMA分析发现,超高应变速率下<c+a>等非基面滑移系被开动,高CRSS值滑移系的开动以及二次孪晶与复杂的非基面滑移的交互作用是Mg-Y-Nd-Zr-Gd合金超高应变速率下屈服点提升以及异常加工硬化的主要原因。

 For Mg-Y-Nd-Zr-Gd alloy, a compression deformation test was conducted under conventional strain rate(1×10-3- 1 s-1) and ultrahigh strain rate(>1×103 s-1) at room temperature, and its mechanical response and microstructure evolution were studied comprehensively. The results show that the deformation characteristics of Mg-Y-Nd-Zr-Gd alloy under two strain rate ranges are different. Within the conventional strain rate range, the mechanical properties of the material are similar under different strain rates, and the work hardening rate of the material continues to decrease after yielding. However, when entering the ultrahigh strain rate range, the yield point of the material rises, and the work hardening rate appears to plateau and continues until the material breaks. Under conventional strain rate conditions, the dominant deformation mechanisms are basal slip and tensile twins, while a large number of secondary twins appear after the ultrahigh strain rate deformation. According to IGMA analysis, it is found that the non-basal <c+a> slip systems are activated at the ultrahigh strain rate. The activation of slip systems with high CRSS value and the interactions between secondary twins and complex non-basal slip are the main reasons for the yield point increase and abnormal work hardening of Mg-Y-Nd-Zr-Gd alloy at ultra high strain rate.

基金项目:
山东省重点研发计划(重大科技创新工程)资助项目(2021ZLGX01)
作者简介:
作者简介:韩陆依(1993-),男,博士研究生 E-mail:hanluyi@mail.sdu.edu.cn 通信作者:王广春(1966-),男,博士,教授 E-mail:wgc@sdu.edu.cn
参考文献:

 
[1]Song J, Chen J, Xiong X,et al. Research advances of magnesium and magnesium alloys worldwide in 2021
[J]. Journal of Magnesium and Alloys, 2022, 10(4):863-898.



[2]Zhan H, Zhang J, Miao J, et al. A low-cost Mg-Al-Mn-Zn alloy for automotive road wheel applications
[J]. Materials Science and Engineering: A, 2024, 891: 146321.


[3]杨青山,颜宏伟,彭鹏,等.高成形镁合金板材最新研究进展
[J].稀有金属,2024,48(3):398-410.

Yang Q S, Yan H W, Peng P, et al. Latest progress of high formability in Mg alloy sheets: A review
[J]. Chinese Journal of Rare Metals, 2024, 48(3): 398-410.


[4]范海冬.镁合金塑性机制研究综述
[J].固体力学学报,2019,40(4):287-325.

Fan H D. Plastic deformation mechanism in magnesium alloys: A review
[J]. Chinese Journal of Solid Mechanics, 2019, 40(4): 287-325.


[5]Habib S A, Khan A S, Gnupel-Herold T, et al. Anisotropy, tension-compression asymmetry and texture evolution of a rare-earth-containing magnesium alloy sheet, ZEK100, at different strain rates and temperatures: Experiments and modeling
[J]. International Journal of Plasticity, 2017, 95: 163-190.


[6]Guan D, Wynne B, Gao J, et al. Basal slip mediated tension twin variant selection in magnesium WE43 alloy
[J]. Acta Materialia, 2019, 170: 1-14.


[7]Yin D D, Boehlert C J, Long L J, et al. Tension-compression asymmetry and the underlying slip/twinning activity in extruded Mg-Y sheets
[J]. International Journal of Plasticity, 2021, 136: 102878.


[8]吴泽威,颜俊雄,胡励,等.双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理
[J/OL].金属学报:1-13
[2024-05-09].

Wu Z W, Yan J X, Hu L, et al. Abnormal rolling behavior and deformation mechanisms of bimodal non-basal texture AZ31 magnesium alloy sheet at medium temperature
[J/OL]. Acta Metallurgica Sinica, 1-13
[2024-05-09].


[9]Beyerlein I J, McCabe R J, Tome C N. Stochastic processes of {1012} deformation twinning in hexagonal close-packed polycrystalline zirconium and magnesium
[J]. International Journal for Multiscale Computational Engineering, 2011, 9(4):459-480.


[10]Yang B, Lorca J. Origin of nucleation and growth of extension twins in grains unsuitably oriented for twinning during deformation of Mg-1%Al
[J]. Journal of Magnesium and Alloys, 2024, 12(3): 1186-1203.


[11]Zhang S, Fan Y, Zhao H, et al. A comparative study on the effect of 0.5wt% Ca or Ce on the microstructure, texture, and mechanical properties of the hot-rolled Mg-4Li alloy
[J]. Materials Today Communications, 2024,39: 108540.


[12]Ning H, Wang C, Gao Y, et al. Understanding the deformation behaviours of Mg alloys with dispersed non-basal grain-embedded orientation heterostructures
[J]. Acta Materialia, 2024,267: 119727.


[13]Zhou S, Liu T, Tang A, et al. Ductility enhancement by activating non-basal slip in Mg alloys with micro-Mn
[J]. Transactions of Nonferrous Metals Society of China, 2024, 34(2): 504-518. 


[14]Li C, Jin J, Yan H, et al. Non-basal slip induced rare earth texture evolution in Mg-14Gd-0.5 Zr (wt.%) alloy during the traditional hot rolling
[J]. Journal of Alloys and Compounds, 2024,994: 174737.


[15]Liu B, Guo L, Chen Y, et al. Role of micro-alloying element in dynamic deformation of Mg-Y alloys
[J]. International Journal of Mechanical Sciences, 2024, 269: 109057. 


[16]Chen X M, Xiao B C, Lin Y C, et al. Experimental study of low-cycle fatigue behavior in a Mg-Y-Zn alloy with initial LPSO phase
[J]. Materials Science and Engineering: A, 2024, 899: 146414.


[17]Yang L, Shi H, Huang Y, et al. Achieving high mechanical performance of the large-scale sand-casting Mg-4Y-xNd-yGd-0.4Zr alloys by tailoring Nd and Gd contents
[J]. Materials Science and Engineering: A, 2024,900: 146476.


[18]Zhang Z, Kim J, Li M, et al. Effects of Nd content on the microstructures and mechanical properties of ZK60 Mg alloy and corresponding strengthening mechanisms
[J]. Materials Science and Engineering: A, 2024,901: 146504.


[19]Wang M, Xu X Y, Wang H Y, et al. Evolution of dislocation and twin densities in a Mg alloy at quasi-static and high strain rates
[J]. Acta Materialia, 2020, 201: 102-113. 


[20]Han L, Yu Y, Wei D, et al. The synergistic and interactive effects of slip systems and dynamic recrystallization on the weakening basal texture of Mg-Y-Nd-Zr-Gd magnesium alloy
[J]. Materials & Design, 2024, 237: 112583.


[21]Lentz M, Risse M, Schaefer N, et al. Strength and ductility with {10-11}-{10-12} double twinning in a magnesium alloy
[J]. Nature Communications, 2016, 7(1): 11068.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9