网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
超薄不锈钢波纹管液压成形力学分析与工艺研究
英文标题:Mechanics analysis and process research on hydroforming of ultra-thin stainless steel bellows
作者:陈一哲1 2 鲁栋1 马小瑶1 洪峰1 赵世龙1 王辉1 2 华林1 
单位:1.武汉理工大学 现代汽车零部件技术湖北省重点实验室 2.武汉理工大学 湖北隆中实验室 
关键词:波纹管 液压成形 力学模型 内压力 加载路径 
分类号:TG394
出版年,卷(期):页码:2024,49(7):179-189
摘要:

 超薄不锈钢波纹管具有优异的弹性性能,但超小厚径比、圆角半径等特征导致其成形过程中易发生破裂、屈曲等缺陷,制约了其在汽车领域的发展与应用。通过理论分析建立了薄壁波纹管在自由胀形、内压力与轴向力共同作用下的力学模型,发现了不同应力、应变状态下内压力的上下限以及内压力与胀形波高的关系。通过试验与数值模拟相结合的方式,研究了初胀内压力、整形内压力与加载路径对薄壁波纹管成形质量的影响。采用最优工艺参数,得到的波纹管平均外径为Φ70.7 mm,误差小于2%,验证了力学分析与数值模拟的准确性,为汽车关键零部件的制备提供了参考。

 Ultra-thin stainless steel bellows exhibit exceptional elasticity, however, their inherent low thickness-to-diameter ratio and fillet radius lead to a higher susceptibility to defects such as fractures and buckling, thereby impeding their advancement and widespread adoption within the automotive industry. A mechanical model for thin-walled bellows under the combined action of free bulging, internal pressure and axial force was established through theoretical analysis. And the upper and lower limits of intermal pressure, and the relationship between internal pressure and height of bulging wave under different stress and strain states were found. Experimental and numerical simulation were synergistically employed to investigate the influence of initial expansion internal pressure, shaping internal pressure and loading paths on the forming quality of thin-walled bellows. The bellows obtained by the optimal process parameters, with an average outer diameter of Φ70.7 mm, exhibits an error margin below 2%, validating the accuracy of both the theoretical analysis and numerical simulations, this validation serves as a valuable reference for the fabrication of critical automotive components.

基金项目:
中国科协青年人才托举工程(2021QNRC001);国家自然科学基金资助项目(52175360,52373320)
作者简介:
作者简介:陈一哲(1990-),男,博士,教授 E-mail:yzchen@whut.edu.cn 通信作者:华林(1962-),男,博士,教授 E-mail:hualin@whut.edu.cn
参考文献:

 
[1]马伟,李德雨,钟玉平.波纹管的发展与应用
[ J ].河南科技大学学报(自然科学版),2004,25(4):28-31.


Ma W,Li D Y,Zhong Y P. Development and application of bellows
[J].Journal of Henan University of Science and Technology(Natural Science),2004,25 (4): 28-31.


[2]杨玲.膨胀节波纹管优化设计研究
[D].重庆:西南农业大学,2003.

Yang L. Optimization Design Research on Expansion Joint Bellows
[D].Chongqing: Southwest University,2003. 


[3]Lin C,Chu G,Sun L,et al. Radial hydro-forging bending: A novel method to reduce the springback of AHSS tubular component
[J].International Journal of Machine Tools and Manufacture,2021, 160: 103650.


[4]Abrantes J P, Szabo-Ponce A, Batalha G F. Experimental and numerical simulation of tube hydroforming (THF)
[J].Journal of Materials Processing Technology,2005,164: 1140-1147.


[5]Yuan S, Yuan W, Wang X. Effect of wrinkling behavior on formability and thickness distribution in tube hydroforming
[J]. Journal of Materials Processing Technology,2006,177 (1-3): 668-671.


[6]吕志勇,刘静,李兰云,等.高温合金矩形波纹管液压胀形变形特征
[J].塑性工程学报,2022,29(8):36-46.

Lyu Z Y, Liu J, Li L Y, et al. Deformation characteristics of hydroforming of superalloy rectangular bellows
[J]. Journal of Plasticity Engineering, 2022, 29(8): 36-46.


[7]陈杰.管材内高压成形数值模拟与工艺研究
[D].上海:上海交通大学,2013.

Chen J. Numerical Simulation and Optimization of Tube Hydroforming
[D].Shanghai: Shanghai Jiao Tong University,2013.


[8]Faraji G, Mashhadi M M, Norouzifard V. Evaluation of effective parameters in metal bellows forming process
[J]. Journal of Materials Processing Technology, 2009, 209(7): 3431-3437.


[9]赵长财.薄壁管在内压、轴力作用下的初始屈服
[J].塑性工程学报, 2001, 8(3):29-31. 

Zhao C C. The limited length thin wall tube initial yield under the pressure of hydraulic and axial pressure
[J]. Journal of Plasticity Engineering, 2001, 8(3): 29-31.


[10]Ko M,Altan T.Prediction of forming limits and parameters in the tube hydroforming process
[J]. International Journal of Machine Tools & Manufacture,2002,42(1): 123-138.


[11]杨东,徐雪峰,范玉斌,等.大径厚比不锈钢弯管内胀冷推弯成形数值模拟及实验研究
[J].锻压技术,2022,47(10):154-162.

Yang D, Xu X F,Fan Y B, et al. Numerical simulation and experimental study on internal expansion cold push bending for stainless steel bent tube with large diameter to thickness ratio
[J]. Forging & Staming Technology, 2022, 47(10): 154-162.


[12]Zhao G, Liu Y, He Y, et al. Cross-sectional distortion behaviors of thin-walled rectangular tube in rotary-draw bending process
[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(3): 484-489.


[13]王彪. 5A03铝合金波纹管轴向低压压形工艺
[D]. 哈尔滨: 哈尔滨工业大学, 2021.

Wang B. Axial Low Pressure Forming Process of 5A03 Aluminum Alloy Bellows
[D]. Harbin: Harbin Industrial University, 2021.


[14]李泷杲. 金属薄壁管液压成形应用基础研究
[D]. 南京: 南京航空航天大学, 2009.

Li L G.Foundamental Study on Tube Hydroforming Process
[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2009.


[15]陈仙风. 基于数值模拟的汽车管件液压成形工艺分析
[D]. 上海: 上海交通大学, 2008.

Chen X F.An Analysis on Numerical Simulation of Tube Hydroforming of Automobille
[D]. Shanghai:Shanghai Jiao Tong University, 2008.


[16]Nader A. Analytical modeling of the hydroforming
[J]. Thin-Walled Structures, 1999 (34): 295-330.


[17]Hwang Y M, Lin Y K. Analysis and finite element simulation of the tube bulge hydroforming process
[J]. Journal of Materials Processing Technology, 2002, 46:821-825


[18]Tetsumaro H, Hisashi N. Bulging limit of thin-walled aluminum tubes with a surface defect
[J]. Advanced Technology of Plasticity, 1993: 527-532.


[19]李新军,周贤宾,郎利辉.薄壁管轴压胀形关键工艺参数及成形极限
[J].北京航空航天大学学报, 2006, 32 (4): 475-480.

Li X J, Zhou X B, Lang L H. Process parameters and limits in tube hydro-forming with axial feeding
[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(4): 475-480.


[20]孙康,洪峰,龙曲波,等.超薄壁不锈钢波纹管件液压成形工艺研究
[J].塑性工程学报,2023,30(11):11-20.

Sun K, Hong F, Long Q B, et al. Reserch on hydroforming process of stainless steel bellows with ultra-thin wall
[J]. Journal of Plasticity Engineering, 2023,30(11):11-20.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9