网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
单向热塑性玻璃纤维金属层板热冲压成形性能
英文标题:Hot stamping formability for unidirectional thermoplastic glass fiber metal laminates
作者:杨姝1 2 张宁1 亓昌1 2 盈亮1 
单位:1.大连理工大学 机械工程学院 2.大连理工大学 宁波研究院 
关键词:单向热塑性玻璃纤维金属层板 胀形试验 热冲压成形 温度 成形速度 成形性 
分类号:TB333
出版年,卷(期):页码:2024,49(8):38-46
摘要:

 为了研究2/1型单向热塑性玻璃纤维金属层板(UTG/FMLs)的热成形性能,基于热冲压成形工艺,通过胀形试验开展了温度和成形速度对其热成形性能影响规律的研究并分析了成形机理。结果表明:提高温度会降低UTG/FMLs的整体强度并提高异质层间的协调变形能力,进而影响其热成形性能;160~200 ℃温度区间可使该类FMLs异质层间达到理想的协调变形并提高成形质量。成形速度不会影响UTG/FMLs的初始力学性能,但会改变其成形过程的受力分布,影响成形件的表面质量和层间结合性能;较低的成形速度有助于抑制成形件缺陷的产生。最后,基于典型双曲率复杂曲面件热冲压成形试验,验证了该方法的有效性,确定其最佳成形温度为180 ℃、成形速度为3 mm·s-1

  In order to study the thermoforming properties unidirectional thermoplastic glass fiber metal laminates (UTG/FMLs) of 2/1 of type, the influence laws of temperature and forming speed on the thermoforming properties of UTG/FMLS were studied by the bulging test based on the hot stamping process, and the forming mechanism was analyzed. The results show that increasing the temperature can decrease the overall strength of UTG/FMLs and improve the coordinated deformation ability of heterogeneous layers, thus affecting the thermoforming properties. The temperature range of 160-200 can achieve the ideal coordinated deformation between the heterogeneous layers of FMLs and improve the forming quality. However, the forming speed does not affect the initial mechanical properties of UTG/FMLs, but changes the force distribution during its forming process and affects the surface quality and the interlayer bonding properties of formed parts. The lower forming speed helps to restrain the defects of formed parts. Finally, the effectiveness of the method is verified based on the hot stamping test of typical hyperbolic complex curved parts, and the optimum forming temperature is 180 and the forming speed is 3 mm·s-1.

基金项目:
国家重点研发计划项目(2022YFB2503503);国家自然科学基金资助项目(52375310)
作者简介:
作者简介:杨姝(1978-),女,博士,副教授 E-mail:yangshu@dlut.edu.cn 通信作者:盈亮(1983-),男,博士,副教授 E-mail:yingliang@dlut.edu.cn
参考文献:

 [1]Liu Y, Zhang R, Liang E Q, et al. A review on development and properties of GLARE, an advanced aircraft material[A]. 2014 International Conference on Advanced Nano-Technology and Biomedical MaterialANTBM 2014[C].Guangzhou,2014.


[2]胡玉冰. Ti/CF/PMR聚酰亚胺超混杂层板制备及性能研究[D]. 南京: 南京航空航天大学,2017.


Hu Y B. Preparation and Properties of Titanium/Carbon Fiber/PMR Polyimide Laminates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.


[3]Hamza H, Lang L H, Li L, et al. Deep drawing of fiber metal laminates using an innovative material design and manufacturing process[J]. Composites Communications, 2021,23:100590


[4]Lin Y Y, Liu C, Li H G, et al. Interlaminar failure behavior of Glare laminates under double beam five-point-bending load[J]. Composite Structures, 2018, 201: 79-85.


[5]刘建光,张嘉振,岳广全,. 纤维金属层板曲面零件成形技术研究[J]. 航空制造技术, 2019,62(16):46-52.


Liu J G, Zhang J Z, Yue G Q, et al. Research on forming technology of fiber metal laminate curved parts[J]. Aeronautical Manufacturing Technology, 2019,62(16):46-52.


[6]Zafar R, Lang L, Zhang R. Experimental and numerical evaluation of multilayer sheet forming process parameters for light weight structures using innovative methodology[J]. International Journal of Material Forming, 2016, 9(1): 35-47.


[7]Chen J, Sherwood J A, Buso P. Stamping of continuous fiber thermoplastic composites[J]. Polymer Composites, 2004, 21(4): 539-547.


[8]Gresham J, Cantwell W, Cardew-Hall M J, et al. Drawing behavior of metal-composite sandwich structures[J]. Composite Structures, 2006, 75: 305-312.


[9]Atrian A, Panahi H. Experimental and finite element investigation on wrinkling behaviour in deep drawing process of Al3105/polypropylene/steel304 sandwich sheets[J]. Procedia Manufacturing, 2018, 15: 984-991.


[10]Aghchai J A,Khatami S. Experimental and numerical formability investigation of FML sheets with glass fiber reinforced core[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9-12): 3881-3891.


[11]何诞,陶杨洋,陶杰. 纤维金属层板成形极限测试的新试样设计[J].哈尔滨工业大学学报, 2022,54(5):94-103.


He D, Tao Y Y, Tao J. New specimen design for forming limit test of fiber metal laminates[J]. Journal of Harbin Institute of Technology, 2022, 54(5):94-103.


[12]GB/T 228.22015,金属材料 拉伸试验 2部分:高温试验方法[S].


GB/T 228.22015Metallic materialsTensile testingPart 2: Method of test at elevated temperature[S].


[13]李哲夫,刘卫平,孙宝忠,. 未固化预浸料在热模压预成型过程中的黏弹性行为研究[J]. 复合材料科学与工程, 2023(2):84-93.


Li Z F, Liu W P, Sun B Z, et al. Investigation of the viscoelastic behavior in the hot press-forming process of uncured prepreg laminates[J]. Composites Science and Engineering, 2023(2):84-93.


[14]张适龄,杨军,张丽敏,. 连续玻纤增强PA6复合材料的制备[J]. 工程塑料应用, 2020,48(7):13-16.


Zhang S L, Yang J, Zhang L M, et al. Preparation of continuous glass fiber-reinforced polyamide 6 composites[J]. Engineering Plastics Application, 2020, 48(7):13-16.


[15]杨姝,魏文涛,崔海超,. GLARE层板热态气压成形工艺参数影响规律研究[J]. 重庆理工大学学报(自然科学), 2023,37(9):116-123.


Yang S, Wei W T, Cui H C, et al. Research on the law of GLARE laminates hot pressure forming process parameters[J]. Journal of Chongqing University of TechnologyNatural Science, 2023,37(9):116-123.


[16]张雷,李静,庄毅,. 连续碳纤维/聚酰胺6混编织物复合材料的成型及性能研究[J]. 材料导报, 2023,37 (S1):566-571.


Zhang L, Li J, Zhuang Y, et al. Preparation and properties of continuous carbon fiber/nylon 6 mixed braid fabric composites[J]. Materials Reports, 2023,37(S1):566-571.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9