网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Zr-2.5Nb合金反挤压扩孔工艺
英文标题:Backward extrusion reaming process of Zr-2.5Nb alloy
作者:曹康琪1 2 崔春娟1 李科元2 李新意2 周宣2 张建军2  
单位:1.西安建筑科技大学 冶金工程学院 2.西安西部新锆科技股份有限公司 
关键词:Zr-2.5Nb合金 反挤压扩孔 反挤压温度 反挤压速度 反挤压力 
分类号:TG379
出版年,卷(期):页码:2024,49(8):73-79
摘要:

 为解决Zr-2.5Nb合金挤压锭坯制备材料利用率较低的问题,通过Deform-2D有限元软件模拟分析了不同反挤压温度和反挤压速度对反挤压扩孔成形过程中的金属流动、温度场和反挤压力的影响。模拟结果表明:当反挤压速度为15~25 mm·s-1时,扩孔时锭坯的温度场较为均匀,随着反挤压速度的增大,锭坯温度场对应的温度值逐渐升高,金属流动性更好;当反挤压温度为810 ℃、反挤压速度为25 mm·s-1时,锭坯温度场的整体温差最小,随着反挤压速度的增大,反挤压力基本维持稳定。基于模拟结果,采用反挤压温度为780~810 ℃、反挤压速度为10~80 mm·s-1进行试验。结果表明:当反挤压温度分别为780和810 ℃、反挤压速度为60 mm·s-1时,不同反挤压温度对金属扩余重量无显著影响;在反挤压温度不变的情况下,随着反挤压速度的增加,金属扩余重量减少并逐步趋于稳定,当反挤压速度达到40~60 mm·s-1时,反挤压扩孔时产生的金属扩余重量较轻,材料利用率明显提高;当采用反挤压温度为780 ℃、反挤压速度为60 mm·s-1的工艺参数时,所制备的管材的组织均匀性及力学性能均略有提升。

 In order to solve the problem of low material utilization rate in the preparation of Zr-2.5Nb alloy extrusion billet, the influences of different backward extrusion temperature and backward extrusion speed on metal flow, temperature field and backward extrusion force in the process of backward extrusion reaming were simulated and analyzed by finite element software Deform-2D, and the simulation results show that when the backward extrusion speed is 15-25 mm·s-1, the temperature field of billet during reaming is relatively uniform. Then, with the increasing of backward extrusion speed, the temperature value corresponding to the temperature field of billet gradually increases, and the metal fluidity become better. Furthermore, when the backward extrusion temperature is 810 and the backward extrusion speed is 25 mm·s-1, the overall temperature difference of the billet temperature field is the smallest, and with the increasing of backward extrusion speed, the backward extrusion force basically remaines stable. Finally, according to the simulation results, the extrusion test was carried out under the conditions of the backward extrusion temperature of 780-810  and the backward extrusion speed of 10-80 mm·s-1. The results show that when the backward extrusion temperature is 780 and 810 , respectively, and the backward extrusion speed is 60 mm·s-1, different backward extrusion temperatures have no significant effect on the metal expansion weight. Under the constant backward extrusion temperature, with the increasing of backward extrusion speed, the weight of metal oddments decreases and gradually tends to be stable. When the backward extrusion speed reaches 40-60 mm·s-1, the weight of metal oddments generated during the backward extrusion reaming is lighter, and the material utilization rate is significantly improved. However, when the backward extrusion temperature is 780 and the backward extrusion speed is 60 mm·s-1, the microstructure uniformity and mechanical properties of the prepared pipe are slightly improved.

基金项目:
中核集团“青年英才”计划(CNNC2019QNYC-039);陕西省秦创原“科学家+工程师”队伍建设项目(2022-KXJ-145)
作者简介:
作者简介:曹康琪(1989-),男,学士,工程师 E-mail:ckqsnz462@126.com 通信作者:崔春娟(1972-),女,博士,教授 E-mail:cuichunjuan@xauat.edu.cn
参考文献:

 [1]秋穗正,Norman C.Johnston. 秦山三期CANDU核电厂堆芯结构[J]. 核动力工程,19996):490-495.


Qiu S ZNorman C.Johnston. Reactor core structure of qinshan phase CANDU nuclear power plant[J]. Nuclear Power Engineering19996):490-495.


[2]Cheadle B AColeman C ELicht H . CANDU-PHW pressure tubes: Their manufacture, inspection, and properties[J]. Nuclear Technology1982573):413-425.


[3]郭丽娜,韩华,卞伟,等. Zr-2.5Nb合金压力管材料微观组织研究[J]. 核动力工程,2017,38S1):89-93.


Guo L NHan HBian Wet al. Study on microstructure of Zr-2.5Nb pressure tube material[J].Nuclear Power Engineering2017,38S1):89-93.


[4]周默.U型铜材连续挤压等距扩展成型工艺基础研究[D].大连:大连交通大学,2023.


Zhou M. Basic Research on Equidistant Expansion Forming Process of Continuous Extrusion of U-shape Strip[D].DalianDalian Jiaotong University2023.


[5]谢建新,刘静安. 金属挤压理论与技术 [M]. 2.北京:冶金工业出版社,2012.


Xie J XLiu J A. Metal Extrusion Theory and Technology [M]. 2nd Edition.Beijing:Metallurgical Industry Press2012.


[6]陈文泗. 铝合金反向挤压的特点及我国发展前景[J]. 铝加工,20162):42-44.


Chen W S. Backward extrusion characteristics for aluminum alloy and development prospect in China[J]. Aluminium Fabrication20162):42-44.


[7]Saibaba N, Vaibhaw K, Neogy S,et al.Study of microstructure texture and mechanical properties of Zr-2.5Nb alloy pressure tubes fabricated with different processing routes[J].Journal of Nuclear Materials 2013440(1-3):  319-331.


[8]Nicolas Christodoulou.Zr-2.5Nb pressure tubes in CANDU reactors[J].Pressurized Heavy Water Reactors20227): 69-133.


[9]Saxena K K, Sonkar S, Kumar R, et al. Effect of temperature and strain rate on deformation behavior of zirconium alloy: Zr-2.5Nb-0.5Cu[J].Procedia Materials Science20146):188-193.


[10]田锋,李帅,周宣,等. Zr-2.5Nb合金高温流变行为及热加工图研究[J]. 有色金属加工,202453(1):46-51.


Tian FLi SZhou Xet al.Study on rheological behavior and hot working diagram of Zr-2.5Nb alloy at high temperature[J].Nonferrous Metals Processing202453(1):46-51.


[11]苏承龙,李利盛,黄新琼,等. 一种热挤压坯料扩孔工艺[P].中国:CN110976544A2020-04-10.


Su C LLi L SHuang X Qet al. A processing of hot expand extrusion billet[P].ChinaCN110976544A2020-04-10.


[12]李志勇,拓雷锋,张文魁,等. UNS N06625镍基合金管坯热扩孔工艺研究[J]. 热加工工艺,2018, 4717):137-140.


Li Z YTuo L FZhang W Ket al. Research on hot expanding hole process of UNS N06625 nickel base alloy tube blank[J].Hot Working Technology20184717):137-140.


[13]王国红,赵国栋,葛文中. 扩孔设备及扩孔工艺[P].中国:CN106670301A2017-05-17.


Wang G H Zhao G DGe W Z. Reaming equipment and hole expansion process[P].ChinaCN106670301A2017-05-17.


[14]耿佩,龚小涛,陈文静,等.Zr-2.5Nb合金热变形行为研究[J].精密成形工程,202214(6)65-70.


Geng PGong X TChen W Jet al. Hot deformation behavior of Zr-2.5Nb[J].Journal of Netshape Forming Engineering2022 146):65-70.


[15]Ni JZhao Y C Wang Let al. Microstructure of Zircaloy-4 alloy during β phase quenching and determination of critical quenching diameter of its rods[J].Nuclear Materials and Energy201817:158-163.


[16]赵帆,赵乙丞,齐鹏,等. 锆合金热挤压用防护润滑剂的试制与性能[J].工程科学学报,202143(2):232-238.


Zhao FZhao Y CQi Pet al.Trial manufacture and propetries of proctective lubrucants for hot extrusion of zirconium alloy[J].Chinese Journal of Engineering202143(2):232-238.


[17]Ben Ammar Y, Aoufi A, Darrieulat M.Influence of the cooling rate on the texture and the microstructure of Zircaloy-4 studied by means of a Jominy end-quench test[J]. Materials Science and Engineering:A2012,556:184-193.


[18]Dureja A K, Sinha S K, Ankit Srivastava Aet al. Flow behaviour of autoclaved20% cold workedZr-2.5Nb alloy pressure tube material in the temperature range of room temperature to 800 [J].Journal of Nuclear Materials2011,412:22-29.


[19]周宣,李科元,李新意,等.Zr-2.5Nb压力管制造过程中的组织结构演变(Ⅰ)-α/β相转变[J].原子能科学技术, 202312):2409-2416.


Zhou XLi K YLi X Yet al. Microstructure of evolution during fabrication of Zr-2.5Nb pressure tube I-α/βphase transformation[J].Journal of Atomic Energy Science and Technology202312):2409-2416.


[20]赵冠楠,周宣,王永东,等.CANDU压力管用Zr-2.5Nb合金热挤压的数值模拟研究[J].热加工工艺,2022,513):104-107,111.


Zhao G NZhou XWang Y Det al. Study of numerical simulation of Zr-2.5Nb alloy hot extrusion for CANDU pressure tube[J].Hot Working Technology2022,513):104-107,111.


[21]郭宝峰,金淼,刘鑫刚,等.小规格TiNiNb管材的反向挤压成形工艺参数[J].塑性工程学报,2010172):50-55.


Guo B FJin MLiu X Get al. Reserch on process parameters of small size TiNiNb tube backward extrusion[J].Journal of Plasticity Engineering,2010172):50-55.


[22]GB/T 228.12021,金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.12021Metallic materialsTensile testingPart1Method of test at room temperature[S].

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9