[1]徐海鹰.蒙皮拉形数值模拟系统的后置处理及软件 [D].北京:北京航空航天大学,2001.
Xu H Y. Application Development and Post-processing of NC Skin Stretch Forming Simulation [D]. Beijing: Beihang University, 2001.
[2]陈晓伟,万敏,王文平.金属板料预应力成形技术研究进展 [J].锻压技术,2022,47(7):1-8.
Chen X W, Wan M, Wang W P. Research progress on pre-stress forming technology for sheet metal [J]. Forging & Stamping Technology, 2022,47(7):1-8.
[3]万敏,吴向东,李盛,等. 网格应变分析技术及系统 [J]. 锻造与冲压,2006(10): 34-37.
Wan M, Wu X D, Li S, et al. Grid strain analysis technology and system [J]. Foring & Metalforming, 2006(10): 34-37.
[4]吴向东,万敏,李盛.便携式板料应变测量系统GMAS[A]. 第九届全国塑性工程学术年会、第二届全球华人先进塑性加工技术研讨会论文集[C].太原: 2005.
Wu X D, Wan M, Li S, et al. Portable sheet metal strain measurement system GMAS [A]. Proceedings of the 9th National Academic Conference on Plastic Engineering and the 2nd Global Chinese Advanced Plastic Processing Technology Symposium[C].Taiyuan: 2005.
[5]项辉宇,钟约先,吴伯杰. 基于网格试验法的汽车覆盖件冲压成形分析 [J]. 清华大学学报,2004,44(5):601-604.
Xiang H Y,Zhong Y X,Wu B J. Analysis of the forming characteristics of automobile stamped panel parts based on the experimental grid method [J]. Journal of Tsinghua University, 2004, 44(5):601-604.
[6]张福生, 景作军. 基于计算机视觉的辊弯成型应变测量系统研究[J].机械设计与制造,2010(5):96-97.
Zhang F S, Jing Z J. Research of strain measurement system for roll forming based on computer vision [J]. Machinery Design & Manufacture, 2010(5):96-97.
[7]孙永鹏, 钟佩思, 刘梅, 等. 基于YOLOv4算法的冲压件缺陷检测[J]. 锻压技术,2022,47(1):222-228.
Sun Y P, Zhong P S, Liu M, et al. Defect detection of stamping parts based on YOLOv4 algorithm[J]. Forging & Stamping Technology, 2022,47(1):222-228.
[8]王柯. 数字图像修复方法研究进展 [J]. 现代信息科技,2022,6(4):38-40.
Wang K. Research progress of digital image inpainting methods [J]. Modern Information Technology, 2022, 6(4):38-40.
[9]Bertalmio M, Sapiro G, Caselles V,et a1.Image inpainting [A]. Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques [C]. Los Angeles:2000.
[10]Ballester C, Bertalmio M, Caselles V, et al. Filling-in by joint interpolation of vector fields and gray levels [A]. IEEE Transactions on Image Processing [C]. New York:2001.
[11]Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D Nonlinear Phenomena, 1992, 60(1-4):259-268.
[12]王璇. 基于GAN的唐卡图像修复算法研究与系统实现 [D].银川:宁夏大学,2021.
Wang X. Research and System Implementation of Thangka Image Inpainting Algorithm Based on Deep GAN [D]. Yinchuan: Ningxia University, 2021.
[13]Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets [A]. Advances in Neural Information Processing Systems [C]. Montreal: 2014.
[14]梁加易. 基于深度学习的图像修复技术研究 [D]. 北京: 北京邮电大学, 2021.
Liang J Y. Research on Image Restoration Technology Based on Deep Learning [D]. Beijing: Beijing University of Post and Telecommunications, 2021.
[15]王奕超. 局部信息缺失的人脸图像修复与识别的研究与实现 [D]. 成都: 电子科技大学, 2020.
Wang Y C. Research and Implementation of Inpainting and Recognition of Partial Information Missed Face Images [D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[16]Gao R, Grauman K. On-demand learning for deep image restoration [A]. IEEE Conference on Computer Vision and Pattern Recognition [C]. New York: 2016.
[17]Perez P, Gangnet M, Blake A. Poisson image editing [A]. ACM SIGGRAPH 2003 Papers [C]. New York :2003.
[18]Lin Z, Xiong W, Barnes C, et al. Foreground-aware image inpainting[A]. IEEE Conference on Computer Vision and Pattern Recognition [C]. New York: 2019.
[19]Sahoo S K, Lu W. Image denoising using sparse approximation with adaptive window selection [A]. International conference on Information Communications Signal Processing[C]. New York: 2011.
[20]周林勇, 谢晓尧, 刘志杰, 等. 基于ACGAN的图像识别算法 [J]. 计算机工程, 2019, 45(10): 246-252,259.
Zhou L Y, Xie X Y, Liu Z J, et al. Image identification algorithm based on ACGAN [J]. Computer Engineering, 2019, 45(10): 246-252,259.
[21]Pathak D, Krahenbuhl P, Donahue J, et al. Context encoders: Feature learning by inpainting [A]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [C]. IEEE,2016.
[22]Iizuka S, Simo-Serra E, Ishikawa H. Globally and locally consistent image completion [J]. ACM Transactions on Graphics (TOG), 2017,36(4):1-14.
[23]Yu J H, Lin Z, Yang J M, et al. Generative image inpainting with contextual attention [A]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition [C]. New York: 2018.
[24]Nazeri K, Ng E, Joseph T, et al. EdgeConnect: Structure guided image inpainting using edge prediction [A]. Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops [C]. New York: 2019.
[25]Nazeri K, Ng E, Joseph T, et al. EdgeConnect: Generative image inpainting with adversarial edge learning [A]. Computer Vision and Pattern Recognition [C]. Los Angeles:2019.
[26]郝跃军, 马泽, 安瑞中, 等. 基于改进的纹理性质的图像修复技术研究 [J]. 计算机与数字工程, 2023, 51(8):1844-1847.
Hao Y J, Ma Z, An R Z, et al. Research on image restoration technology based on improved texture properties [J]. Computer & Digital Engineering, 2023, 51(8):1844-1847.
[27]胥加洁.基于生成对抗网络的图像修复技术研究 [D].扬州: 扬州大学, 2020.
Xu J J. Research on Image Inpainting Technology Based on Generative Adversarial Networks [D]. Yangzhou: Yangzhou University, 2020.
[28]姜艺, 胥加洁, 柳絮, 等. 边缘指导图像修复算法研究 [J]. 计算机科学与探索, 2022, 16(3):669-682.
Jiang Y, Xu J J, Liu X, et al. Research on edge-guided image repair algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3):669-682.
[29]朱德泉. 基于生成对抗网络的人脸图像修复的研究 [D]. 成都: 电子科技大学, 2020.
Zhu D Q. Research on Face Image Inpainting Based on Generative Adversarial Network [D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[30]李悦城. 基于生成对抗网络的卫星图像修复方法研究 [D]. 哈尔滨: 哈尔滨工业大学,2021.
Li Y C. Research on Satellite Image Inpainting Based on Generative Adversarial Network [D]. Shenzhen: Harbin Institute of Technology, 2021.
[31]魏域林. 层间特征融合与多注意力的图像修复算法研究 [D]. 兰州: 兰州理工大学,2020.
Wei Y L. Image Inpainting with Interlayer Feature Fusion and Multi-attention [D]. Lanzhou: Lanzhou University of Technology, 2020.
[32]胡凯, 赵健, 刘昱, 等. 结构引导的图像修复[J]. 北京航空航天大学学报, 2022, 48(7):1269-1277.
Hu K, Zhao J, Liu Y, et al. Images inpainting via structure guidance [J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1269-1277.
[33]冯建周, 马祥聪, 刘亚坤, 等. 关于命名实体识别的生成式对抗网络的研究 [J]. 小型微型计算机系统, 2019, 40(6):1191-1196.
Feng J Z, Ma X C, Liu Y K, et al. Research on generative adversarial networks of named entity recognition [J]. Journal of Chinese Computer System, 2019, 40(6):1191-1196.
[34]杨忠鹏, 李启南. 改进SteGAN的嵌入式图像隐写方案 [J]. 兰州交通大学学报, 2022, 41(4):48-57.
Yang Z P, Li Q N. Improved SteGAN embedded image steganography scheme [J]. Journal of Lanzhou Jiaotong University, 2022, 41(4):48-57.
[35]余艳杰, 孙嘉琪, 葛思擘, 等. CycleGAN-SN:结合谱归一化和CycleGAN的图像风格化算法 [J]. 西安交通大学学报, 2020, 54(5):133-141.
Yu Y J, Sun J Q, Ge S B, et al. CycleGAN-SN:Image stylization algorithm combining spectral normalization and CycleGAN[J]. Journal of Xi′an Jiaotong University, 2020, 54(5):133-141.
[36]Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection [A]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition [C]. New York: 2016.
[37]李亚男,万敏,吴向东. 基于应变非接触测量的裂纹拼接 [J]. 锻压技术,2013,38(6):111-115.
Li Y N, Wan M, Wu X D. Crack spliced based on non-contact strain measurement [J]. Forging & Stamping Technology, 2013, 38(6):111-115.
|