网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
引线框架用CuCrSnZnSi铜合金组织与性能
英文标题:Microstructure and properties of CuCrSnZnSi copper alloy for lead frames
作者:刘晓彬1 张延松1 王若兰1 冯宏伟1 邓立勋1 武峥1 龚留奎1 2 黄伟1 
单位:1.中国兵器科学研究院宁波分院 2.宁波表面工程研究院有限公司 
关键词:CuCrSnZnSi铜合金 抗拉强度 导电率 微观组织 强化机制 
分类号:TG146.1
出版年,卷(期):页码:2024,49(8):205-213
摘要:

 采用SEM、EBSD、XRD、TEM及力学、电学性能检测手段,研究了Cu-0.2Cr-0.252Sn-0.166Zn-0.014Si合金的微观组织结构与强化机制。结果表明,铸态Cu-0.2Cr-0.252Sn-0.166Zn-0.014Si合金经热轧+水冷、冷轧、时效、冷轧、退火处理后的抗拉强度、屈服强度、显微硬度、断后伸长率、导电率分别为483 MPa、452 MPa、178.0 HV0.2、9%和69.6%IACS。退火处理后合金平均晶粒尺寸约为1.20 μm,局部应变较高,晶粒错位角为17.15°,具有较强的择优取向,以Goss织构({110}<001>)和Copper织构({112}<11-1>)为主。Sn、Zn元素以固溶的形式弥散分布于基体中,Cr元素则以纳米相的形式分布于基体中,晶界强化是退火态Cu-0.2Cr-0.252Sn-0.166Zn-0.014Si合金的主要强化机制,Cr元素纳米析出强化与Sn、Zn元素固溶强化、位错强化相对较弱。

 The microstructure and strengthening mechanism of Cu-0.2Cr-0.252Sn-0.166Zn-0.014Si alloy were studied using SEM, EBSD, XRD, TEM as well as mechanical and electrical performance testing methods. The results show that the tensile strength, yield strength, microhardness, elongation after fracture and conductivity of as-cast Cu-0.2Cr-0.252Sn-0.166Zn-0.014Si alloy after hot rolling+water cooling, cold rolling aging, cold rolling and annealing treatment are 483 MPa, 452 MPa, 178.0 HV0.2, 9% and 69.6%IACS, respectively. The average grain size of the alloy after annealing treatment is about 1.20 μm. The local strain is relatively high, with a grain dislocation angle of 17.15° and a strong preferred orientation, mainly characterized by Goss texture ({110}<001>) and Copper texture ({112}<11-1>). The elements Sn and Zn are dispersed in the matrix in a solid solution form, while the element Cr is distributed in the matrix in a nano phase form, the grain boundary strengthening is the main strengthening mechanism of annealed Cu-0.2Cr-0.252Sn-0.166Zn-0.014Si alloy, with relatively weaker element Cr nanoprecipitation strengthening, elements Sn and Zn solid solution strengthening and dislocation strengthening.

基金项目:
宁波市重点研发计划(2023Z096,2023Z092);宁波市科技创新2025重大专项(2019B10083)
作者简介:
作者简介:刘晓彬(1987-),女,硕士,副研究员 E-mail:47995715@qq.com 通信作者:黄伟(1981-),男,博士,研究员 E-mail:hw315@126.com
参考文献:

 [1]刘鸿智, 童景琳. 冷轧变形对引线框架用Cu-Ni-Si合金硬度与导电性能的影响[J]. 热加工工艺, 2024,53(10):130-132,136.


Liu H Z, Tong J L. Effects of cold rolling deformation on hardness and conductivity of Cu-Ni-Si alloy for lead frame[J]. Hot Working Technology, 2024,53(10):130-132,136.

[2]李翰冬, 张振峰, 刘志林, 等. 引线框架用C19210铜合金异形带连续挤压有限元模拟[J]. 塑性工程学报, 2023,30(9):17-26.

Li H D, Zhang Z F, Liu Z L, et al. Finite element simulation of continuous extrusion of C19210 copper alloy special-strip for lead frame[J]. Journal of Plasticity Engineering, 2023,30(9):17-26.

[3]张洪涛. 高性能铜合金成分与工艺机器学习理性设计研究[D]. 北京: 北京科技大学, 2023.

Zhang H T. Rational Design of Composition and Process for High Performance Copper Alloys via Machine Learning[D]. Beijing: University of Science and Technology Beijing, 2023.

[4]董鑫, 曹立军, 阮金琦, 等. 高性能Cu-Ni-Co-Si引线框架材料研究进展[J]. 兵器材料科学与工程, 2022,45(6):163-170.

Dong X, Cao L J, Ruan J Q, et al. Research progress on high-performance Cu-Ni-Co-Si alloy for lead frame[J]. Ordnance Material Science and Engineering, 2022,45(6):163-170.

[5]于国军, 田教锋, 孙天祥. 集成电路中的引线框架质量影响分析[J]. 集成电路应用, 2023,40(7):41-43.

Yu G J, Tian J F, Sun T X. Analysis of the quality impact of lead frame in integrated circuits[J]. Application of IC, 2023,40(7):41-43.

[6]祝儒飞, 刘宇宁, 张嘉凝, 等. 蚀刻与冲压用铜合金板带的分条变形及应力分布[J]. 稀有金属, 2023,47(7):995-1004.

Zhu R F, Liu Y N, Zhang J N, et al. Slitting deformation and stress distribution of copper alloy strip for etching and stamping[J]. Chinese Journal of Rare Metals, 2023,47(7):995-1004.

[7]宋永沙. 新型(IC)引线框架材料铜合金的研制[J]. 湖南冶金, 1992(4):11-13.

Song Y S. Development of a new type (IC) lead frame material copper alloy[J]. Hunan Metallurgy, 1992(4):11-13.

[8]付锐, 冯涤, 陈希春, 等. Ni42引线框架材料的研究进展[J]. 材料导报, 2007,21(11):85-87.

Fu R, Feng D, Chen X C, et al. Research progress on Ni42 lead frame materials[J]. Material Introduction, 2007,21(11):85-87.

[9]苏娟华, 许莹莹, 董企铭, 等. Cu-Fe-P合金引线框架材料残余应力的有限元分析[J]. 热加工工艺, 2006,35(12):7-10.

Su J H, Xu Y Y, Dong Q M, et al. Finite element analysison residual stress of Cu-Fe-P alloy for lead frame[J]. Hot Working Technology, 2006,35(12):7-10.

[10]Zhang C Z, Chen C G, Lu T X, et al. Microstructure and mechanical properties of Cu-Fe alloys via powder metallurgy[J]. Materials Science Forum, 2021,1016:1727-1732.

[11]武安琪, 王松伟, 陈帅峰, 等. 引线框架用铜镍硅合金研究现状及发展趋势[J]. 铜业工程, 2021(4):14-20.

Wu A Q, Wang S W, Chen S F, et al. Research status and development trend of copper-nickel-silicon alloy for lead frame[J]. Copper Engineering, 2021(4):14-20.

[12]Gong L K, Huang Y Q, Han Z, et al. Texture evolution and strengthening mechanism of CuCrZr alloys during cold rolling[J]. Vacuum, 2024,221:112908.

[13]龚留奎, 袁继慧, 罗富鑫, 等. 合金化对Cu-Cr-Zr-Ti合金组织与性能的影响[J]. 金属热处理, 2018,43(8):7-12.

Gong L K, Yuan J H, Luo F X, et al. Effect of alloying on microstructure and properties of Cu-Cr-Zr-Ti alloy[J]. Heat Treatment of Metals, 2018,43(8):7-12.

[14]Qu J P, Yue S P, Zhang W S, et al. Optimization of microstructure and properties of as-cast various Si containing Cu-Cr-Zr alloy by experiments and first-principles calculation[J]. Materials Science and Engineering:A, 2022,831:142353.

[15]Sasaki H, Akiya S, Oba Y. Characterization of precipitated phase in Cu-Ni-Si alloy by small-angle X-ray scattering, small angle neutron scattering and atom probe tomography[J]. Materials transactions, 2022,63(10):1384-1389.

[16]Ne D. Mechanical behavior of materials[J]. Materials Today, 2005,8(11):59-59.

[17]Freudenberger J, Lybimova, J, Gaganoy A, et al. Non-destructive pulsed field CuAg-solenoids[J]. Materials Science and Engineering:A, 2005,527:2004-2013.

[18]Niels H. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia, 2004,51:801-806.

[19]Liu Y, Li Z, Jiang Y X, et al. The microstructure evolution and properties of a Cu-Cr-Ag alloy during thermal-mechanical treatment[J]. Journal of Materials Research, 2017,32:1324-1332.

[20]Williamson G K, Hall W H. X-ray line broadening from filed aluminium and wolfram[J]. Acta Metallurgica, 1953,1(1):22-31.

[21]Williamson G K, Smallman R E. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum III[J]. Philosophical Magazine, 1956,1(1):34-46.

[22]Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy[J]. Acta Materialia, 2014,62(5):141-155.

[23]Gladman T. Precipitation hardening in metals[J]. Materials Science and Technology, 1999,15(1):30-36.

[24]Gottstein G. Physical foundations of materials science[J]. Materials Today, 2004,7(7):197-302.

[25]Mabuchi M, Higashi K. Strengthening mechanism of Mg-Si alloy[J]. Acta Materialia, 1996,44(11):4611-4618.

[26]Neite G, Nembach E. Hardening mechanisms in the nimonic alloy[J]. Strength of Metals and Alloys, 1985(12-16):417-422.

[27]Han K, Embury J D, Sims J R, et al. The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite conductors[J]. Materials Science and Engineering: A, 1999,267(1):99-114.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9