[1]刘鸿智, 童景琳. 冷轧变形对引线框架用Cu-Ni-Si合金硬度与导电性能的影响[J]. 热加工工艺, 2024,53(10):130-132,136.
Liu H Z, Tong J L. Effects of cold rolling deformation on hardness and conductivity of Cu-Ni-Si alloy for lead frame[J]. Hot Working Technology, 2024,53(10):130-132,136.
[2]李翰冬, 张振峰, 刘志林, 等. 引线框架用C19210铜合金异形带连续挤压有限元模拟[J]. 塑性工程学报, 2023,30(9):17-26.
Li H D, Zhang Z F, Liu Z L, et al. Finite element simulation of continuous extrusion of C19210 copper alloy special-strip for lead frame[J]. Journal of Plasticity Engineering, 2023,30(9):17-26.
[3]张洪涛. 高性能铜合金成分与工艺机器学习理性设计研究[D]. 北京: 北京科技大学, 2023.
Zhang H T. Rational Design of Composition and Process for High Performance Copper Alloys via Machine Learning[D]. Beijing: University of Science and Technology Beijing, 2023.
[4]董鑫, 曹立军, 阮金琦, 等. 高性能Cu-Ni-Co-Si引线框架材料研究进展[J]. 兵器材料科学与工程, 2022,45(6):163-170.
Dong X, Cao L J, Ruan J Q, et al. Research progress on high-performance Cu-Ni-Co-Si alloy for lead frame[J]. Ordnance Material Science and Engineering, 2022,45(6):163-170.
[5]于国军, 田教锋, 孙天祥. 集成电路中的引线框架质量影响分析[J]. 集成电路应用, 2023,40(7):41-43.
Yu G J, Tian J F, Sun T X. Analysis of the quality impact of lead frame in integrated circuits[J]. Application of IC, 2023,40(7):41-43.
[6]祝儒飞, 刘宇宁, 张嘉凝, 等. 蚀刻与冲压用铜合金板带的分条变形及应力分布[J]. 稀有金属, 2023,47(7):995-1004.
Zhu R F, Liu Y N, Zhang J N, et al. Slitting deformation and stress distribution of copper alloy strip for etching and stamping[J]. Chinese Journal of Rare Metals, 2023,47(7):995-1004.
[7]宋永沙. 新型(IC)引线框架材料铜合金的研制[J]. 湖南冶金, 1992(4):11-13.
Song Y S. Development of a new type (IC) lead frame material copper alloy[J]. Hunan Metallurgy, 1992(4):11-13.
[8]付锐, 冯涤, 陈希春, 等. Ni42引线框架材料的研究进展[J]. 材料导报, 2007,21(11):85-87.
Fu R, Feng D, Chen X C, et al. Research progress on Ni42 lead frame materials[J]. Material Introduction, 2007,21(11):85-87.
[9]苏娟华, 许莹莹, 董企铭, 等. Cu-Fe-P合金引线框架材料残余应力的有限元分析[J]. 热加工工艺, 2006,35(12):7-10.
Su J H, Xu Y Y, Dong Q M, et al. Finite element analysison residual stress of Cu-Fe-P alloy for lead frame[J]. Hot Working Technology, 2006,35(12):7-10.
[10]Zhang C Z, Chen C G, Lu T X, et al. Microstructure and mechanical properties of Cu-Fe alloys via powder metallurgy[J]. Materials Science Forum, 2021,1016:1727-1732.
[11]武安琪, 王松伟, 陈帅峰, 等. 引线框架用铜镍硅合金研究现状及发展趋势[J]. 铜业工程, 2021(4):14-20.
Wu A Q, Wang S W, Chen S F, et al. Research status and development trend of copper-nickel-silicon alloy for lead frame[J]. Copper Engineering, 2021(4):14-20.
[12]Gong L K, Huang Y Q, Han Z, et al. Texture evolution and strengthening mechanism of CuCrZr alloys during cold rolling[J]. Vacuum, 2024,221:112908.
[13]龚留奎, 袁继慧, 罗富鑫, 等. 合金化对Cu-Cr-Zr-Ti合金组织与性能的影响[J]. 金属热处理, 2018,43(8):7-12.
Gong L K, Yuan J H, Luo F X, et al. Effect of alloying on microstructure and properties of Cu-Cr-Zr-Ti alloy[J]. Heat Treatment of Metals, 2018,43(8):7-12.
[14]Qu J P, Yue S P, Zhang W S, et al. Optimization of microstructure and properties of as-cast various Si containing Cu-Cr-Zr alloy by experiments and first-principles calculation[J]. Materials Science and Engineering:A, 2022,831:142353.
[15]Sasaki H, Akiya S, Oba Y. Characterization of precipitated phase in Cu-Ni-Si alloy by small-angle X-ray scattering, small angle neutron scattering and atom probe tomography[J]. Materials transactions, 2022,63(10):1384-1389.
[16]Ne D. Mechanical behavior of materials[J]. Materials Today, 2005,8(11):59-59.
[17]Freudenberger J, Lybimova, J, Gaganoy A, et al. Non-destructive pulsed field CuAg-solenoids[J]. Materials Science and Engineering:A, 2005,527:2004-2013.
[18]Niels H. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia, 2004,51:801-806.
[19]Liu Y, Li Z, Jiang Y X, et al. The microstructure evolution and properties of a Cu-Cr-Ag alloy during thermal-mechanical treatment[J]. Journal of Materials Research, 2017,32:1324-1332.
[20]Williamson G K, Hall W H. X-ray line broadening from filed aluminium and wolfram[J]. Acta Metallurgica, 1953,1(1):22-31.
[21]Williamson G K, Smallman R E. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum III[J]. Philosophical Magazine, 1956,1(1):34-46.
[22]Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy[J]. Acta Materialia, 2014,62(5):141-155.
[23]Gladman T. Precipitation hardening in metals[J]. Materials Science and Technology, 1999,15(1):30-36.
[24]Gottstein G. Physical foundations of materials science[J]. Materials Today, 2004,7(7):197-302.
[25]Mabuchi M, Higashi K. Strengthening mechanism of Mg-Si alloy[J]. Acta Materialia, 1996,44(11):4611-4618.
[26]Neite G, Nembach E. Hardening mechanisms in the nimonic alloy[J]. Strength of Metals and Alloys, 1985(12-16):417-422.
[27]Han K, Embury J D, Sims J R, et al. The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite conductors[J]. Materials Science and Engineering: A, 1999,267(1):99-114.
|