[1]刘正东,程世长,杨钢,等. 中国超超临界火电机组用S30432钢管研制[J]. 钢铁,2010,45(6):1-6.
Liu Z D,Cheng S C,Yang G,et al. Research and development of S30432 steel tubes in China used for ultra supercritical(USC)power plants [J]. Iron & Steel,2010,45(6):1-6.
[2]刘正东,程世长,包汉生,等. 超超临界火电机组用锅炉钢技术国产化问题[J]. 钢铁,2009,44(6):1-7.
Liu Z D,Cheng S C,Bao H S,et al. Localization of boiler steel technolgy in China used for ultra super critical power plants[J]. Iron & Steel, 2009,44(6):1-7.
[3]李益民,范长信,杨百勋,等. 大型火电机组用新型耐热钢[M]. 北京:中国电力出版社, 2013.
Li Y M, Fan C X,Yang B X, et al. New Heat-resistant Steel for Large Thermal Power Units[M]. Beijing: China Electric Power Press,2013.
[4]邢娜,黄宝,何立波. 超临界超超临界锅炉管品种的开发现状[J]. 特殊钢,2016,37(1):17-21.
Xing N, Huang B,He L B. Present Status of development of supercritical and ultra-supercritical boiler tubes[J]. Special Steel, 2016,37(1):17-21.
[5]杨岩,程世长,杨钢. 铜含量对Super304H钢持久性能的影响[J]. 机械工程材料,2002(10):23-25.
Yang Y,Cheng S C,Yang G. Effect of Cu addition on the creep rupture properties of Super304H steel[J]. Materials for Mechanical Engineering, 2002(10):23-25.
[6]李鹏,吴桂,康喜唐,等. 超超临界S30432无缝厚壁管的带状晶粒组织研究[J]. 铸造设备与工艺,2022(1):17-20,23.
Li P, Wu G, Kang X T, et al. Research on banded grains of ultra-supercritical S30432 seamless thick-walled steel tube[J]. Foundry Equipment & Technology, 2022(1):17-20,23.
[7]张冬宇.轧制过程中钢的奥氏体变形与再结晶[J]. 金属世界,2007(3):39-42.
Zhang D Y. The Deformation and recrystalization of austenite of steel in rolling processing[J]. Metal World, 2007(3):39-42.
[8]方旭东,李阳,夏焱,等. 冷轧工艺对C-HRA-5管材组织及力学性能的影响[J].轧钢,2017,34(6):38-41.
Fang X D, Li Y, Xia Y, et al. Effeet of cold rolling process on mierostrueture and mechanical properties of C-HRA-5 tubes[J]. Steel Rolling, 2017,34(6):38-41.
[9]钟正彬,张杰. 固溶温度对S30432新型奥氏体不锈钢性能的影响[J]. 金属加工(热加工),2021(9):35-37.
Zhong Z B, Zhang J. The effect of solid solution temperature on the properties of S30432 new austenitic stainless steel[J]. MW Metal Forming, 2021(9):35-37.
[10]包汉生,程世长,刘正东,等. 热处理对ASME S30432 奥氏体耐热钢性能的影响[J]. 金属热处理,2009,34(8):77-82.
Bao H S, Cheng S C,Liu Z D,et al. Effect of heat treatment on properties of ASTM S30432 austenitic heat resistant steel[J]. Heat Treatment of Metals, 2009,34(8):77-82.
[11]GB/T 5310—2023,高压锅炉用无缝钢管[S].
GB/T 5310—2023,Seamless steel tubes and pipes for high pressure boiler[S].
[12]ASME SA-213-2021,Specification for seamless ferritic and austenitic alloy-steel boiler, super-heater, and heat-exchanger tubes[S].
[13]GB/T 6394—2017,金属平均晶粒度测定方法[S].
GB/T 6394—2017, Determination of estimating the average grain size of metal[S].
[14]GB/T 231.1—2018,金属材料布氏硬度试验第1部分: 试验方法[S].
GB/T 231.1—2018,Metallic materials—Brinell hardness test—Part 1: Test method [S].
[15]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].
[16]GB/T 2039—2012,金属材料单轴拉伸蠕变试验方法[S].
GB/T 2039—2012,Metallic materials—Uniaxial creep testing method in tension[S].
[17]田晓,李芳草,徐慧,等. 一种用于奥氏体不锈钢管非等轴晶组织晶粒度的测量与表征方法[P].中国:CN113125319A,2021-07-16.
Tian X, Li F C, Xu H, et al. A measurement and characterization method for grain size of non equiaxed crystal structure inaustenitic stainless steel tubes[P]. China: CN113125319A,2021-07-16.
[18]宋爱玲,曹铁山,程从前,等. 晶粒形态对HR3C耐热不锈钢时效脆性的影响[J]. 机械工程材料,2022,46(3):53-54.
Song A L, Cao T S,Cheng C Q, et al. Effect of grain morphology on aging brittleness of HR3C heat-resistantstainless steel[J]. Materials for Mechanical Engineering, 2022,46(3):53-54.
[19]李昌义,王行,王爱琴,等. 大型奥氏体不锈钢锻件的晶粒尺寸控制[J]. 锻压技术,2022,47(8):22-28.
Li C Y,Wang H,Wang A Q,et al. Grain size control for large austenitic stainless steel forgings[J]. Forging & Stamping Technology,2022,47(8):22-28.
[20]李超群,张立文,李飞,等. 10钢热变形过程动态再结晶行为[J]. 锻压技术,2022,47(2):207-212.
Li C Q,Zhang L W,Li F,et al. Dynamic recrystallization behavior for 10 steel during thermal deformation process[J]. Forging & Stamping Technology,2022,47(2):207-212.
|