[1]罗永赞.铁素体不锈钢的进展[J].材料开发与应用,1996(2):41-48.
Luo Y Z. Progress of ferritic stainless steel [J]. Development and Application of Materials, 1996(2):41-48.
[2]黄元恒.近年来国外不锈钢发展状况[J].上海钢研,1999(1):37-48.
Huang Y H. Development of stainless steel abroad in recent years [J]. Shonghai Steel & Iron Research, 1999(1):37-48.
[3]李晓波.国内铁素体不锈钢的最新发展[J].铸造设备研究,2006(4):52-54.
Li X B. The latest development of ferritic stainless steel in China [J]. Foundry Equipment & Technology, 2006(4):52-54.
[4]徐增华.金属耐蚀材料 第四讲 铁素体不锈钢[J].腐蚀与防护,2001,22(4):184-186.
Xu Z H. Corrosion resistant metal materials Ⅳ-Ferritic stainless steel [J]. Corrosion and Protection, 2001,22(4):184-186.
[5]丁茹,王伯健,王成,等.铁素体不锈钢的开发研究[J].钢铁研究学报,2009,21(10):1-4.
Ding R, Wang B J, Wang C, et al. Development of ferritic stainless steel [J]. Journal of Iron and Steel Research, 2009,21(10):1-4.
[6]杜伟,江来珠,余海峰,等.铁素体不锈钢的冲压性[J].宝钢技术,2012 (6):66-76.
Du W, Jiang L Z, Yu H F, et al. Stampability of ferritic stainless steel [J]. Baosteel Technology, 2012 (6):66-76.
[7]Gao F, Chen Y J, Zhu Q Y,et al. Formation of recrystallization texture and its effect on deep drawability for high-purified ferritic stainless steel by two step cold rolling[J]. Materials & Design,2023,226:111678.
[8]Sakai T, Saito Y, Matsuo M,et al.Inhomogeneous texture formation in high speed hot rolling of ferritic stainless steel[J].Transactions of the Iron & Steel Institute of Japan, 2007, 31(1):86-94.
[9]陈闯. 轧制及热处理对铁素体不锈钢组织、性能的影响[D]. 长春: 长春工业大学,2022.
Chen C. Effect of Rolling and Heat Treatment on Microstructure and Properties of Ferritic Stainless Steel [D]. Changchun:Changchun University of Technology, 2022.
[10]Gao F,Yu F X,Liu F T, et al. Hot Deformation behavior and flow stress prediction of ultra purified 17%Cr ferritic stainless steel stabilized with Nb and Ti[J]. Journal of Iron & Steel Research International, 2015, 22(9):827-836.
[11]Song Y H, Li Y G, Li H Y, et al. Hot deformation and recrystallization behavior of a new nickel-base superalloy for ultra-supercritical applications[J]. Journal of Materials Research and Technology, 2022, 19: 4308-4324.
[12]Zhao G H, Tian Y H, Song Y H, et al. A comparative study of three constitutive models concerning thermo-mechanical behavior of Q345 steel during hot deformation[J]. Crystals,2022,12(9): 1262.
[13]Mehtonen S V, Karjalainen L P, Porter D A.Hot deformation behavior and microstructure evolution of a stabilized high-Cr ferritic stainless steel[J]. Materials Science and Engineering: A,2013,571:1-12.
[14]宋耀辉,李玉贵,王顺,等.铸态309L不锈钢的热变形行为及热加工图分析[J].重型机械,2020(5):75-79.
Song Y H, Li Y G, Wang S, et al.Thermal deformation behavior and thermal processing diagram analysis of as-cast 309L stainless steel [J]. Heavy Machinery, 2020(5):75-79.
[15]Song Y H, Li Y G, Zhao G H, et al. Electron backscatter diffraction investigation of heat deformation behavior of 2205 duplex stainless steel[J]. Steel Reserch International,2021,92(5):2000587.
[16]Liang J W, Shen Y F, Misra R D K.High strength-superplasticity combination of ultrafine-grained ferritic steel: The significant role of nanoscale carbides[J]. Journal of Materials Science & Technology, 2021,83(24):131-144
[17]Xie B C, Yu H, Sheng T, et al. DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′sub-/super-solvus temperatures[J].Journal of Alloys and Compounds,2019,803:16-29.
[18]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[A]. Proceedings of the 7th International Symposium on Ballistics[C]. Den Haag, 1983.
[19]Lin Y C, Chen X M, Liu G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel[J]. Materials Science and Engineering:A, 2010, 527(26): 6980-6986.
[20]Zerilli F J, Armstrong R W. Dislocation mechanics based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5):1816-1825.
[21]Samantaray D, Sumantra M, Utpal B, et al.A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J]. Materials Science and Engineering:A,2009,526(1-2):1-6.
[22]Sellars C M, Mctegart W J .On the mechanism of hot deformation[J].Acta Metallurgica, 1966, 14(9):1136-1138.
[23]Xiao Y H,Guo C. Constitutive modelling for high temperature behavior of 1Cr12Ni3Mo2VNbN martensitic steel[J]. Materials Science and Engineering:A,2011,528(15):5081-5087.
[24]Zener C, Hollomon H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.
[25]Kumar A G,Nitin H K,Yashjeet S,et al.Development of constitutive models for dynamic strain aging regime in Austenitic stainless steel 304[J].Materials & Design,2012,45:616-627.
[26]李娟,陈慧琴,赵广辉,等.含铜3.6%抗菌奥氏体不锈钢的热变形行为研究[J].热加工工艺,2018,47(23):25-29.
Li J, Chen H Q, Zhao G H, et al. Study on hot deformation behavior of antibacterial austenitic stainless steel containing 3.6% copper [J]. Hot Working Technology, 2018,47(23):25-29.
[27]黄有林,王建波,凌学士,等.热加工图理论的研究进展[J].材料导报,2008,22(S3):173-176.
Huang Y L, Wang J B, Ling X S, et al. Research progress of thermal processing diagram theory [J]. Materials Guide, 2008,22(S3):173-176.
[28]Rishira J. Development of a processing map for use in warm-forming and hot-forming processes[J]. Metallurgical Transactions A,1981,12(6):1089-1097.
[29]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10):1883-1892.
[30]王刘行,杨银辉,刘泽辉,等.18.3Cr-11.0Mn-0.06Ni-0.19N超低Ni型双相不锈钢的热压缩行为及裂纹控制[J].材料热处理学报,2022,43(5):104-115.
Wang L X, Yang Y H, Liu Z H, et al. Hot compression behavior and crack control of 18.3Cr-11.0Mn-0.06Ni-0.19N ultra-low Ni duplex stainless steel [J]. Journal of Material Heat Treatment, 2022,43(5):104-115.
[31]Arun Babu K, Mandal S, Athreya C N, et al. Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel[J].Materials & Design,2017,115:262-275.
|