网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
12Cr-1Al-3Mn铁素体不锈钢本构方程及热加工图
英文标题:Constitutive equation and hot processing map of 12Cr-1Al-3Mn ferritic stainless steel
作者:李玉贵1 赵志华2 徐文朝2 宋耀辉2 张铭心3 田传宇2 张志豪1 
单位:1.太原科技大学 机械工程学院 2.太原科技大学 材料科学与工程学院  3.山西航天清华装备有限责任公司 
关键词:铁素体不锈钢 热变形行为 本构方程 热加工图 金相组织 
分类号:TG142.71
出版年,卷(期):页码:2024,49(8):224-238
摘要:

 采用 Gleeble-3800 热模拟装置对12Cr-1Al-3Mn铁素体不锈钢在变形温度为 950~1100 ℃、应变速率为0.01~10 s-1条件下进行了热压缩实验。根据应力-应变曲线,基于修正的 Johnson-Cook、修正的 Zerilli-Armstrong和应变补偿Arrhenius 3种本构模型,建立了3个描述该合金高温流动应力的本构方程。通过量化分析验证了应变补偿的 Arrhenius 模型对12Cr-1Al-3Mn铁素体不锈钢的热变形行为具有较好的预测性,相关系数、平均相对误差和均方根误差分别为 0.9933.57%4.818。此外,建立了12Cr-1Al-3Mn铁素体不锈钢的热加工图,发现高应变速率易导致不锈钢热变形失稳的发生,结合微观组织分析发现温度的升高有利于再结晶的形核。因此,12Cr-1Al-3Mn铁素体不锈钢在变形温度为1020~1100 ℃、应变速率为0.03~0.22 s-1的变形工艺下具有较好的加工性能。

 The hot compression experiments of 12Cr-1Al-3Mn ferritic stainless steel at the deformation temperature of 950-1100 and the strain rate of 0.01-10 s-1 were carried out with Gleeble-3800 thermal simulation device. According to the stress-strain curve, three constitutive equations describing the high temperature flow stress of the alloy were established based on the modified Johnson-Cook, modified Zerilli-Armstrong and strain-compensated Arrhenius constitutive models. Through quantitative analysis, it is verified that the strain-compensated Arrhenius model has a good predictive effect on the hot deformation behavior of 12Cr-1Al-3Mn ferritic stainless steel, and the correlation coefficient, mean relative error and root mean square error were 0.993, 3.57% and 4.818 MPa, respectively. In addition, the hot processing map of 12Cr-1Al-3Mn ferritic stainless steel was established, and it is found that the high strain rate could easily lead to the hot deformation instability of stainless steel, and combined with microstructure analysis, it is found that the increasing of temperature is conducive to recrystallization nucleation. Therefore, 12Cr-1Al-3Mn ferritic stainless steel has good machinability under the deformation process with the deformation temperature of 1020-1100 and the strain rate of 0.03-0.22 s-1.

基金项目:
国家级大学生创新创业训练计划项目 (202210109001);山西省科技成果转化引导专项项目 (202204021301057);中央引导地方科技发展资金资助项目(YDZJSX2021A036);国家自然科学基金资助项目(52375364);山西省基础研究计划项目(TZLH20230818001)
作者简介:
作者简介:李玉贵(1967-),男,博士,教授 E-mail:liyugui@tyust.edu.cn
参考文献:

 [1]罗永赞.铁素体不锈钢的进展[J].材料开发与应用,1996(2):41-48.


Luo Y Z. Progress of ferritic stainless steel [J]. Development and Application of Materials, 1996(2):41-48.


[2]黄元恒.近年来国外不锈钢发展状况[J].上海钢研,1999(1):37-48.


Huang Y H. Development of stainless steel abroad in recent years [J]. Shonghai Steel & Iron Research, 1999(1):37-48.


[3]李晓波.国内铁素体不锈钢的最新发展[J].铸造设备研究,2006(4):52-54.


Li X B. The latest development of ferritic stainless steel in China [J]. Foundry Equipment & Technology, 2006(4):52-54.


[4]徐增华.金属耐蚀材料 第四讲 铁素体不锈钢[J].腐蚀与防护,200122(4):184-186.


 Xu Z H. Corrosion resistant metal materials -Ferritic stainless steel [J]. Corrosion and Protection, 2001,22(4):184-186.


[5]丁茹,王伯健,王成,等.铁素体不锈钢的开发研究[J].钢铁研究学报,2009,21(10):1-4.


 Ding R, Wang B J, Wang C et al. Development of ferritic stainless steel [J]. Journal of Iron and Steel Research, 2009,21(10):1-4.


[6]杜伟,江来珠,余海峰,等.铁素体不锈钢的冲压性[J].宝钢技术,2012 (6):66-76.


Du W, Jiang L Z, Yu H F, et al. Stampability of ferritic stainless steel [J]. Baosteel Technology, 2012 (6):66-76.


[7]Gao F, Chen Y J, Zhu Q Y,et al. Formation of recrystallization texture and its effect on deep drawability for high-purified ferritic stainless steel by two step cold rolling[J]. Materials & Design,2023,226:111678.


[8]Sakai T, Saito Y, Matsuo M,et al.Inhomogeneous texture formation in high speed hot rolling of ferritic stainless steel[J].Transactions of the Iron & Steel Institute of Japan, 2007, 31(1):86-94.


[9]陈闯. 轧制及热处理对铁素体不锈钢组织、性能的影响[D]. 长春: 长春工业大学,2022.


Chen C. Effect of Rolling and Heat Treatment on Microstructure and Properties of Ferritic Stainless Steel [D]. Changchun:Changchun University of Technology, 2022.


[10]Gao F,Yu F X,Liu F T, et al. Hot Deformation behavior and flow stress prediction of ultra purified 17%Cr ferritic stainless steel stabilized with Nb and Ti[J]. Journal of Iron & Steel Research International, 2015, 22(9):827-836.


[11]Song Y H, Li Y G, Li H Y, et al. Hot deformation and recrystallization behavior of a new nickel-base superalloy for ultra-supercritical applications[J]. Journal of Materials Research and Technology, 2022, 19: 4308-4324.


[12]Zhao G H, Tian Y H, Song Y H, et al. A comparative study of three constitutive models concerning thermo-mechanical behavior of Q345 steel during hot deformation[J]. Crystals,2022,12(9): 1262.


[13]Mehtonen S V, Karjalainen L P, Porter D A.Hot deformation behavior and microstructure evolution of a stabilized high-Cr ferritic stainless steel[J]. Materials Science and Engineering: A,2013,571:1-12.


[14]宋耀辉,李玉贵,王顺,.铸态309L不锈钢的热变形行为及热加工图分析[J].重型机械,2020(5):75-79.


Song Y H, Li Y G, Wang S, et al.Thermal deformation behavior and thermal processing diagram analysis of as-cast 309L stainless steel [J]. Heavy Machinery, 2020(5):75-79.


[15]Song Y H, Li Y G, Zhao G H, et al. Electron backscatter diffraction investigation of heat deformation behavior of 2205 duplex stainless steel[J]. Steel Reserch International,2021,92(5):2000587.


[16]Liang J W, Shen Y F, Misra R D K.High strength-superplasticity combination of ultrafine-grained ferritic steel: The significant role of nanoscale carbides[J]. Journal of Materials Science & Technology, 2021,83(24):131-144


[17]Xie B C, Yu H, Sheng T, et al. DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′sub-/super-solvus temperatures[J].Journal of Alloys and Compounds,2019,803:16-29.


[18]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[A]. Proceedings of the 7th International Symposium on Ballistics[C]. Den Haag, 1983.


[19]Lin Y C, Chen X M, Liu G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel[J]. Materials Science and Engineering:A, 2010, 527(26): 6980-6986.


[20]Zerilli F J, Armstrong R W. Dislocation mechanics based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5):1816-1825.


[21]Samantaray D, Sumantra M, Utpal B, et al.A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J]. Materials Science and Engineering:A,2009,526(1-2):1-6.


[22]Sellars C M, Mctegart W J .On the mechanism of hot deformation[J].Acta Metallurgica, 1966, 14(9):1136-1138.


[23]Xiao Y H,Guo C. Constitutive modelling for high temperature behavior of 1Cr12Ni3Mo2VNbN martensitic steel[J]. Materials Science and Engineering:A,2011,528(15):5081-5087.


[24]Zener C, Hollomon H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.


[25]Kumar A G,Nitin H K,Yashjeet S,et al.Development of constitutive models for dynamic strain aging regime in Austenitic stainless steel 304[J].Materials & Design,2012,45:616-627.


[26]李娟,陈慧琴,赵广辉,.含铜3.6%抗菌奥氏体不锈钢的热变形行为研究[J].热加工工艺,2018,47(23):25-29.


Li J, Chen H Q, Zhao G H, et al. Study on hot deformation behavior of antibacterial austenitic stainless steel containing 3.6% copper [J]. Hot Working Technology, 2018,47(23):25-29.


[27]黄有林,王建波,凌学士,.热加工图理论的研究进展[J].材料导报,2008,22(S3):173-176.


Huang Y L, Wang J B, Ling X S, et al. Research progress of thermal processing diagram theory [J]. Materials Guide, 2008,22(S3):173-176.


[28]Rishira J. Development of a processing map for use in warm-forming and hot-forming processes[J]. Metallurgical Transactions A,1981,12(6):1089-1097.


[29]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10):1883-1892.


[30]王刘行,杨银辉,刘泽辉,.18.3Cr-11.0Mn-0.06Ni-0.19N超低Ni型双相不锈钢的热压缩行为及裂纹控制[J].材料热处理学报,2022,43(5):104-115.


Wang L X, Yang Y H, Liu Z H, et al. Hot compression behavior and crack control of 18.3Cr-11.0Mn-0.06Ni-0.19N ultra-low Ni duplex stainless steel [J]. Journal of Material Heat Treatment, 2022,43(5):104-115.


[31]Arun Babu K, Mandal S, Athreya C N, et al. Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel[J].Materials & Design,2017,115:262-275.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9