[1]李昭昆,雷建中,徐海峰,等.国内外轴承钢的现状与发展趋势[J].钢铁研究学报,2016(3):1-12.
Li Z K,Lei J Z,Xu H F,et al. Current status and development trend of bearing steel in China and abroad[J]. Journal of Iron and Steel Research,2016(3):1-12.
[2]Maloney J L,Tomasello C M. Case carburized stainless steel alloy for high temperature applications[P]. US:US5424028,1995-06-13.
[3]袁晓虹.高Cr-Co-Mo轴承钢强韧机制及抗疲特性的多尺度研究[D].昆明:昆明理工大学,2015.
Yuan X H.Multi-scale Strengthening-toughening Mechanisms and Fatigue Resistance of High-alloy Cr-Co-Mo Bearing Steel[D].Kunming:Kunming University of Science and Technology,2015.
[4]肖茂果. 高Cr-Co-Mo高温轴承钢的热变形行为与热处理过程组织结构演变[D].昆明:昆明理工大学,2020.
Xiao M G.Thermal Deformation Behavior and Microstructure Evolution of High Cr-Co-Mo High Temperature Bearing Steel During Heat Treatment[D].Kunming:Kunming University of Science and Technology,2020.
[5]吕新杨. 冷处理对高Cr-Co-Mo轴承钢微观组织及结构的影响[D].昆明:昆明理工大学,2019.
Lyu X Y.Effect of Cold Treatment on Microstructure and Structure of High Cr-Co-Mo Bearing Steel[D].Kunming:Kunming University of Science and Technology,2019.
[6]肖茂果,吕新杨,李东辉,等.高Cr-Co-Mo高温轴承钢的强韧化机制[J].材料热处理学报,2018,39(9):52-57.
Xiao M G,Lyu X Y,Li D H,et al.Strengthening and toughening mechanism of high Cr-Co-Mo heat resistant bearing steel[J].Transactions of Materials and Heat treatment,2018,39(9):52-57.
[7]肖茂果,李东辉,吕新杨,等.热处理对高Cr-Co-Mo轴承钢组织与性能的影响[J].材料热处理学报,2018,39(8):75-81.
Xiao M G,Li D H,Lyu X Y,et al.Effects of heat treatment on microstructure and properties of high Cr-Co-Mo alloyed heat resistant bearing steel [J].Transactions of Materials and Heat treatment,2018,39(8):75-81.
[8]王博,杨卯生,赵昆渝,等.固溶温度对Cr-Co-Mo-Ni轴承钢低温韧性的影响[J].钢铁研究学报,2015,27(11):66-72.
Wang B,Yang M S,Zhao K Y,et al. Influence of solid solution temperature on low temperature toughness of Cr-Co-Mo-Ni bearing steel [J].Journal of Iron and Steel Research,2015,27(11):66-72.
[9]Li J R,He T,Zhang P F,et al. Effect of large-size carbides on the anisotropy of mechanical properties in 11Cr-3Co-3W martensitic heat-resistant steel for turbine high temperature blades in ultra-supercritical power plants[J].Materials Characterization,2020,159:110025.
[10]周年丰. 合金元素对钢结硬质合金组织和性能的影响[D].湘潭:湘潭大学,2017.
Zhou N F. Effect of Alloying Elements on Microstructure and Mechanical Properties of Steel Bonded Carbide[D].Xiangtan:Xiangtan University,2017.
[11]李雨衡,刘雪梅,刘超,等.VC和碳含量对超细晶硬质合金室温和高温性能的影响[J].稀有金属材料与工程,2021,50(6):2169-2176.
Li Y H,Liu X M,Liu C,et al.Effect of VC addition and carbon content on mechanical properties of ultrafine cemented carbides at room and high temperatures[J].Rare Metal Materials and Engineering,2021,50(6):2169-2176.
[12]刘超,江河,董建新,等.钴基高温合金GH5605铸态组织及高温扩散退火过程中元素再分配[J].工程科学学报,2019,41(3):359-367.
Liu C,Jiang H,Dong J X,et al.As-cast microstructure and redistribution of elements in high-temperature diffusion annealing in cobalt-base superalloy GH5605[J].Chinese Journal of Engineering,2019,41(3):359-367.
[13]Sun G S,Zhao M M,Du L X,et al. Significant effects of grain size on mechanical response characteristics and deformation mechanisms of metastable austenitic stainless steel[J]. Materials Characterization,2022,184:111674.
[14]Zhou T Y,Yang J X,Li N,et al. Martensite decomposition under thermal-mechanical coupling conditions to fabricate an ultrafine-grained Ti6Al4Mo4Zr1W0.2Si alloy[J].Journal of Materials Science & Technology,2023,168:157-168.
[15]徐海健,乔馨,郭诚,等.热加工工艺对316LN奥氏体不锈钢晶粒度的影响研究[J].钢铁钒钛,2022,43(4):173-177.
Xu H J,Qiao X,Guo C,et al.Effect of hot working process on the grain size of 316LN austenitic stainless steels[J].Iron Steel Vanadium Titanium,2022,43(4):173-177.
[16]陈楠,刘薇娜.镦拔工艺对4Cr5MoSiV1钢组织和性能的影响[J].热加工工艺,2021,50(1):92-94,97.
Chen N,Liu W N. Effect of upsetting and drawing process on microstructure and properties of 4Cr5MoSiV1 steel[J].Hot Working Technology,2021,50(1):92-94,97.
[17]史宇麟,宋玉冰,薛秋云.大锻件两次镦拔锻造的工艺优化[J].热加工工艺,2007,36(5):51-53.
Shi Y L,Song Y B,Xue Q Y.Optimizing on forging process of two-time upsetting and stretching for large forgings[J].Hot Working Technology,2007,36(5):51-53.
[18]卢瑶,杨栋林.大规格钼合金径向锻造中心裂纹成因分析及改进措施[J].稀有金属与硬质合金,2021,49(1):35-39.
Lu Y,Yang D L. Cause analysis and improvement measures of center cracks of large-size molybdenum alloys during radial forging [J].Rare Metals and Cemented Carbides,2021,49(1):35-39.
[19]钢铁研究总院有限公司. 一种高强高韧耐蚀高温轴承齿轮钢及制备方法[P]. 中国:CN201110156328.9,2011-10-26.
Central Iron & Steel Research Institute Co.,Ltd. A high temperature bearing gear steel with high-strength, high-toughness and corrosion resistant and its preparation method [P].China:CN201110156328.9,2011-10-26.
[20]刘全坤,祖方遒.材料成型基本原理[M].北京:机械工业出版社,2004.
Liu Q K,Zu F Q.Basic Principles of Material Forming[M].Beijing: China Machine Press,2004.
[21]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1:Method of test at room temperature[S].
[22]GB/T 15000.4—2019,标准样品工作导则第4部分:证书、标签和附带文件的内容[S].
GB/T 15000.4—2019,Directives for the work of reference materials—Part 4:Contents of certificates, labels and accompanying documentation[S].
[23]Garcia C,Cornide J,Capdevila C,et al. Influence of V precipitates on acicular ferrite transformation Part 2: Transformation kinetics[J]. ISIJ International, 2008,48: 1276-1279.
[24]姜文鑫,梁航,杨海波,等.多向锻造对8418钢组织和力学性能的影响[J].机电工程技术,2021,50(5):6-9.
Jiang W X,Liang H,Yang H B,et al. The effect of multi-directional forging on the structure and mechanical properties of 8418 steel[J].Mechanical & Electrical Engineering Technology,2021,50(5):6-9.
[25]Hall E O. The deformation and ageing of mild steel:III discussion of results[J]. Proceedings of the Physical Society of London Section B,1951,64:747-753.
[26]Petch N J. The cleavage strength of polycrystals[J]. Journal of Iron and Steel Research International,1953,174:25-28.
[27]Armstrong R,Codd I,Douthwaite R M,et al. The plastic deformation of polycrystalline aggregates[J]. Philosophical Magazine,1962(7):45-58.
|