网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
晶粒尺寸与碳化物组织细化对18Cr14Co12Mo4轴承钢性能的影响
英文标题:Influence of grain size and carbide structure refinement on properties of 18Cr14Co12Mo4 bearing steel
作者:肖桂枝1 李鹤1 庞玉华1 孔浩然1 刘东2 
单位:1.西安建筑科技大学 冶金学院 2.西北工业大学 材料学院 
关键词:轴承钢 两镦两拔 锻造比 高温扩散 晶粒尺寸 碳化物偏析 
分类号:TG316
出版年,卷(期):页码:2024,49(10):1-7
摘要:

18Cr14Co12Mo4轴承钢在高温扩散热处理后,粗大组织未彻底消除,且晶粒尺寸异常粗大,导致材料力学性能降低。针对该问题,对高温扩散热处理后的18Cr14Co12Mo4轴承钢进行锻造比为2.0~2.2的两镦两拔试验,通过场发射扫描电子显微镜对材料微观性能进行表征,并对比分析了锻造前后晶粒大小和组织结构对力学性能的影响。结果表明:该试验细化了晶粒尺寸,平均晶粒尺寸达到30 μm,且减小了微米级碳化物和氧化物的尺寸,减轻了由于合金成分分布不均引起的碳化物偏析,使屈服强度由272 MPa提升至340 MPa,抗拉强度由381 MPa大幅度提升至1637 MPa,提高约4.3倍,伸长率由13.5%提升至24.2%,晶粒尺寸和碳化物组织的细化使18Cr14Co12Mo4轴承钢的力学性能大幅度提升。

After high-temperature diffusion heat treatment, the coarse structure of 18Cr14Co12Mo4 bearing steel is not completely eliminated, and the grain size is abnormally coarse, which decreases the mechanical properties of material. For the problem, the test of two upsetting and two drawing was conducted on 18Cr14Co12Mo4 bearing steel after high-temperature diffusion heat treatment with a forging ratio of 2.0-2.2, and its microscopic properties were characterized by field emission scanning electron microscopy. Then, the influences of grain size and microstructure on the mechanical properties before and after forging were compared and analyzed. The results show that the test refines the grain size to make the average grain size be 30 μm, decreases the size of micro scale carbide and oxide, alleviates the carbide segregation caused by the uneven distribution of alloy components, increases the yield strength from 272 MPa to 340 MPa, greatly enhances the tensile strength from 381 MPa to 1637 MPa with an increasing of about 4.3 times, and improves the elongation from 13.5% to 24.2%. The refinement of grain size and carbide structure notably enhance the mechanical properties of 18Cr14Co12Mo4 bearing steel.

基金项目:
国家自然科学基金资助项目(51804241)
作者简介:
作者简介:肖桂枝(1978-),女,博士,副教授,E-mail:guizhixiao@163.com;通信作者:庞玉华(1965-),女,博士,教授
参考文献:
[1]李昭昆,雷建中,徐海峰,等.国内外轴承钢的现状与发展趋势[J].钢铁研究学报,2016(3):1-12.

Li Z K,Lei J Z,Xu H F,et al. Current status and development trend of bearing steel in China and abroad[J]. Journal of Iron and Steel Research,2016(3):1-12.

[2]Maloney J L,Tomasello C M. Case carburized stainless steel alloy for high temperature applications[P]. US:US5424028,1995-06-13.

[3]袁晓虹.高Cr-Co-Mo轴承钢强韧机制及抗疲特性的多尺度研究[D].昆明:昆明理工大学,2015.

Yuan X H.Multi-scale Strengthening-toughening Mechanisms and Fatigue Resistance of High-alloy Cr-Co-Mo Bearing Steel[D].Kunming:Kunming University of Science and Technology,2015.

[4]肖茂果. 高Cr-Co-Mo高温轴承钢的热变形行为与热处理过程组织结构演变[D].昆明:昆明理工大学,2020.

Xiao M G.Thermal Deformation Behavior and Microstructure Evolution of High Cr-Co-Mo High Temperature Bearing Steel During Heat Treatment[D].Kunming:Kunming University of Science and Technology,2020.

[5]吕新杨. 冷处理对高Cr-Co-Mo轴承钢微观组织及结构的影响[D].昆明:昆明理工大学,2019.

Lyu X Y.Effect of Cold Treatment on Microstructure and Structure of High Cr-Co-Mo Bearing Steel[D].Kunming:Kunming University of Science and Technology,2019.

[6]肖茂果,吕新杨,李东辉,等.高Cr-Co-Mo高温轴承钢的强韧化机制[J].材料热处理学报,2018,39(9):52-57.

Xiao M G,Lyu X Y,Li D H,et al.Strengthening and toughening mechanism of high Cr-Co-Mo heat resistant bearing steel[J].Transactions of Materials and Heat treatment,2018,39(9):52-57.

[7]肖茂果,李东辉,吕新杨,等.热处理对高Cr-Co-Mo轴承钢组织与性能的影响[J].材料热处理学报,2018,39(8):75-81.

Xiao M G,Li D H,Lyu X Y,et al.Effects of heat treatment on microstructure and properties of high Cr-Co-Mo alloyed heat resistant bearing steel [J].Transactions of Materials and Heat treatment,2018,39(8):75-81.

[8]王博,杨卯生,赵昆渝,等.固溶温度对Cr-Co-Mo-Ni轴承钢低温韧性的影响[J].钢铁研究学报,2015,27(11):66-72.

Wang B,Yang M S,Zhao K Y,et al. Influence of solid solution temperature on low temperature toughness of Cr-Co-Mo-Ni bearing steel [J].Journal of Iron and Steel Research,2015,27(11):66-72.

[9]Li J R,He T,Zhang P F,et al. Effect of large-size carbides on the anisotropy of mechanical properties in 11Cr-3Co-3W martensitic heat-resistant steel for turbine high temperature blades in ultra-supercritical power plants[J].Materials Characterization,2020,159:110025.

[10]周年丰. 合金元素对钢结硬质合金组织和性能的影响[D].湘潭:湘潭大学,2017.

Zhou N F. Effect of Alloying Elements on Microstructure and Mechanical Properties of Steel Bonded Carbide[D].Xiangtan:Xiangtan University,2017.

[11]李雨衡,刘雪梅,刘超,等.VC和碳含量对超细晶硬质合金室温和高温性能的影响[J].稀有金属材料与工程,2021,50(6):2169-2176.

Li Y H,Liu X M,Liu C,et al.Effect of VC addition and carbon content on mechanical properties of ultrafine cemented carbides at room and high temperatures[J].Rare Metal Materials and Engineering,2021,50(6):2169-2176.

[12]刘超,江河,董建新,等.钴基高温合金GH5605铸态组织及高温扩散退火过程中元素再分配[J].工程科学学报,2019,41(3):359-367.

Liu C,Jiang H,Dong J X,et al.As-cast microstructure and redistribution of elements in high-temperature diffusion annealing in cobalt-base superalloy GH5605[J].Chinese Journal of Engineering,2019,41(3):359-367.

[13]Sun G S,Zhao M M,Du L X,et al. Significant effects of grain size on mechanical response characteristics and deformation mechanisms of metastable austenitic stainless steel[J]. Materials Characterization,2022,184:111674.

[14]Zhou T Y,Yang J X,Li N,et al. Martensite decomposition under thermal-mechanical coupling conditions to fabricate an ultrafine-grained Ti6Al4Mo4Zr1W0.2Si alloy[J].Journal of Materials Science & Technology,2023,168:157-168.

[15]徐海健,乔馨,郭诚,等.热加工工艺对316LN奥氏体不锈钢晶粒度的影响研究[J].钢铁钒钛,2022,43(4):173-177.

Xu H J,Qiao X,Guo C,et al.Effect of hot working process on the grain size of 316LN austenitic stainless steels[J].Iron Steel Vanadium Titanium,2022,43(4):173-177.

[16]陈楠,刘薇娜.镦拔工艺对4Cr5MoSiV1钢组织和性能的影响[J].热加工工艺,2021,50(1):92-94,97.

Chen N,Liu W N. Effect of upsetting and drawing process on microstructure and properties of 4Cr5MoSiV1 steel[J].Hot Working Technology,2021,50(1):92-94,97.

[17]史宇麟,宋玉冰,薛秋云.大锻件两次镦拔锻造的工艺优化[J].热加工工艺,2007,36(5):51-53.

Shi Y L,Song Y B,Xue Q Y.Optimizing on forging process of two-time upsetting and stretching for large forgings[J].Hot Working Technology,2007,36(5):51-53.

[18]卢瑶,杨栋林.大规格钼合金径向锻造中心裂纹成因分析及改进措施[J].稀有金属与硬质合金,2021,49(1):35-39.

Lu Y,Yang D L. Cause analysis and improvement measures of center cracks of large-size molybdenum alloys during radial forging [J].Rare Metals and Cemented Carbides,2021,49(1):35-39.

[19]钢铁研究总院有限公司. 一种高强高韧耐蚀高温轴承齿轮钢及制备方法[P]. 中国:CN201110156328.9,2011-10-26.

Central Iron & Steel Research Institute Co.,Ltd. A high temperature bearing gear steel with high-strength, high-toughness and corrosion resistant and its preparation method [P].China:CN201110156328.9,2011-10-26.

[20]刘全坤,祖方遒.材料成型基本原理[M].北京:机械工业出版社,2004.

Liu Q K,Zu F Q.Basic Principles of Material Forming[M].Beijing: China Machine Press,2004.

[21]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1:Method of test at room temperature[S].

[22]GB/T 15000.4—2019,标准样品工作导则第4部分:证书、标签和附带文件的内容[S].

GB/T 15000.4—2019,Directives for the work of reference materials—Part 4:Contents of certificates, labels and accompanying documentation[S].

[23]Garcia C,Cornide J,Capdevila C,et al. Influence of V precipitates on acicular ferrite transformation Part 2: Transformation kinetics[J]. ISIJ International, 2008,48: 1276-1279.

[24]姜文鑫,梁航,杨海波,等.多向锻造对8418钢组织和力学性能的影响[J].机电工程技术,2021,50(5):6-9.

Jiang W X,Liang H,Yang H B,et al. The effect of multi-directional forging on the structure and mechanical properties of 8418 steel[J].Mechanical & Electrical Engineering Technology,2021,50(5):6-9.

[25]Hall E O. The deformation and ageing of mild steel:III discussion of results[J]. Proceedings of the Physical Society of London Section B,1951,64:747-753.

[26]Petch N J. The cleavage strength of polycrystals[J]. Journal of Iron and Steel Research International,1953,174:25-28.

[27]Armstrong R,Codd I,Douthwaite R M,et al. The plastic deformation of polycrystalline aggregates[J]. Philosophical Magazine,1962(7):45-58.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9