[1]王贤贤, 张睿翔, 张功学,等. 钛合金热变形织构演变研究进展[J]. 塑性工程学报, 2022,29(12): 1-12.
Wang X X, Zhang R X, Zhang G X,et al. Research progress of texture evolution of titanium alloy in hot deformation process [J]. Journal of Plasticity Engineering, 2022,29(12): 1-12.
[2]罗雷. 超细晶工业纯钛室温变形行为研究[D]. 西安:西安建筑科技大学, 2017.
Luo L. Deformation Behavior of Ultra-fine Grained Commercial Pure Titanium at Room Temperature [D]. Xi′an: Xi′an University of Architecture and Technology, 2017.
[3]林正捷, 王立强, 吕维洁, 等. 大塑性变形制备超细晶生物医用钛合金的研究进展[J]. 材料与冶金学报, 2014, 13 (3): 206-211.
Lin Z J, Wang L Q, Lyu W J,et al. Research progress of fabricating ultrafine- grained biomedical titanium alloys by severe plastic deformation (SPD) [J]. Journal of Materials and Metallurgy, 2014, 13(3):206-211.
[4]强萌,杨西荣,刘晓燕,等.ECAP制备超细晶生物医用钛及钛合金的研究进展(英文)[J].稀有金属材料与工程,2023,52(5):1673-1682.
Qiang M, Yang X R, Liu X Y,et al. Research progress in preparation of ultra-fine crystalline biomedical titanium and titanium alloys by ECAP[J]. Rare Metal Materials and Engineering,2023,52(5):1673-1682.
[5]徐淑波, 赵国群, 栾贻国,等. 等通道弯角挤压变形机理分析与工艺路线研究[J]. 中国机械工程, 2006(S1): 110-114.
Xu S B, Zhao G Q, Luan Y G, et al. Deformation behavior analysis and process investigation of equal channel angular pressing [J]. China Mechanical Engineering, 2006(S1): 110-114.
[6]胡雨龙, 刘晓燕, 高飞龙, 等. TA15钛合金室温等径弯曲通道挤压模拟与试验研究[J]. 塑性工程学报,2022,29(6): 33-40.
Hu Y L, Liu X Y, Gao F L, et al. Simulation and test research of equal channel angular pressing of TA15 titanium alloy at room temperature [J]. Journal of Plasticity Engineering, 2022,29(6): 33-40.
[7]Semiatin S L, Delo D P, Segal V M, et al. Workability of commercial-purity titanium and 4340 steel during equal channel angular extrusion at cold-working temperatures[J]. Metallurgical and Materials Transactions A, 1999, 30: 1425-1435.
[8]Du F P, Liu F, Jiao Q Y, et al. Influence of ECAP temperature on the mechanical properties of pure Ti [J]. Journal of Mechanical Strength, 2017, 39(3): 692-696.
[9]Zadeh L A. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets and Systems, 1999, 100(S1):9-34.
[10]Korkut I, Acir A, Boy M. Application of regression and artificial neural network analysis in modelling of tool-chip interface temperature in machining[J]. Expert Systems with Applications, 2011, 38(9): 11651-11656.
[11]夏洪永, 李军国. 基于PLC的锻造加热炉温度智能控制系统设计[J]. 热加工工艺, 2019, 48(9): 180-182,185.
Xia H Y, Li J G. Design of temperature intelligent control system for forging heating furnace based on PLC [J]. Hot Working Technology, 2019,48(9):180-182,185.
[12]Gao Z, Trautzsch T A, Dawson J G. A stable self-tuning fuzzy logic control system for industrial temperature regulation[J]. IEEE Transactions on Industry Applications, 2002, 38(2): 414-424.
[13]Xie X L, Long Z. Fuzzy PID Temperature control system design based on single chip microcomputer[J]. International Journal of Online Engineering, 2015, 11(8): 29-33.
[14]王克平, 赵西城, 杨西荣. 工业纯钛ECAP温变形的力学性能及热稳定性[J]. 热加工工艺, 2011, 40(20): 7-10.
Wang K P, Zhao X C, Yang X R. Mechanical properties and thermal stability of CP-Ti processed by ECAP at intermediate temperature [J]. Hot Working Technology, 2011, 40(20): 7-10.
[15]Huang Y, Figueiredo R B, Baudin T, et al. Evolution of strength and homogeneity in a magnesium AZ31 alloy processed by high-pressure torsion at different temperatures[J]. Advanced Engineering Materials, 2012, 14(11): 1018-1026.
|