网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于模糊PID温度控制的TA1钛合金 ECAP工艺与试验
英文标题:ECAP process and experiment of TA1 titanium alloy based on fuzzy PID temperature control
作者:赵军 徐浩杰 
单位:厦门理工学院 材料科学与工程学院 
关键词:PID算法 TA1钛合金 挤压温度 模糊控制 超调量 调节时间 稳定性误差 
分类号:TG316
出版年,卷(期):页码:2024,49(10):75-81
摘要:

 针对TA1钛合金挤压过程中变形温度范围窄、常温下变形困难等问题,运用热传导理论,研究了模具传热的基本原理,并设计了模糊PID算法来实现调控温度过程中PID控制器参数的自整定,从而精准控制挤压过程中的温度。进行了算法响应速度和精度的模拟以及显微组织的测试、对比和分析。结果表明:调试后,与传统PID算法相比,采用模糊PID算法的超调量为8.86%,减少了3.97%;调节时间为57.56 s,减少了56.88 s;稳定性误差为0,减少了0.9%。试验研究表明,模具温度变化越小,变形后材料晶粒细化越明显,组织分布越致密均匀。

 Aiming at the problems of narrow range of deformation temperature and difficulty of deformation at room temperature in the extrusion process of TA1 titanium alloy, the basic principle of heat transfer in the mold was studied by applying the heat conduction theory, and a fuzzy PID algorithm was designed to realize the self-tuning of PID controller parameters in the process of regulating temperature, so as to achieve the precise control of temperature in the extrusion process. The simulation of algorithm response speed and accuracy and the test,comparison and analysis of microstructure were carried out. The results show that after debugging, compared with the traditional PID algorithm, the overshoot amount of the fuzzy PID algorithm is 8.86%, a reduction of 3.97%; the regulation time is 57.56 s, a reduction of 56.88 s; the stability error is 0, a reduction of 0.9%. The experimental study shows that the smaller the mold temperature change, the more obvious the grain refinement of the material after deformation, and the more dense and uniform the tissue distribution.

基金项目:
厦门市自然科学基金资助项目(3502Z20227222)
作者简介:
作者简介:赵军(1973-),男,博士,教授,硕士生导师,E-mail:junzhao@xmut.edu.cn
参考文献:

 [1]王贤贤, 张睿翔, 张功学,等. 钛合金热变形织构演变研究进展[J]. 塑性工程学报, 2022,29(12): 1-12.


Wang X X, Zhang R X, Zhang G X,et al. Research progress of texture evolution of titanium alloy in hot deformation process [J]. Journal of Plasticity Engineering, 2022,29(12): 1-12.

[2]罗雷. 超细晶工业纯钛室温变形行为研究[D]. 西安:西安建筑科技大学, 2017.

Luo L. Deformation Behavior of Ultra-fine Grained Commercial Pure Titanium at Room Temperature [D]. Xi′an: Xi′an University of Architecture and Technology, 2017.

[3]林正捷, 王立强, 吕维洁, 等. 大塑性变形制备超细晶生物医用钛合金的研究进展[J]. 材料与冶金学报, 2014, 13 (3): 206-211.

Lin Z J, Wang L Q, Lyu W J,et al. Research progress of fabricating ultrafine- grained biomedical titanium alloys by severe plastic deformation (SPD) [J]. Journal of Materials and Metallurgy, 2014, 13(3):206-211.

[4]强萌,杨西荣,刘晓燕,等.ECAP制备超细晶生物医用钛及钛合金的研究进展(英文)[J].稀有金属材料与工程,2023,52(5):1673-1682.

Qiang M, Yang X R, Liu X Y,et al. Research progress in preparation of ultra-fine crystalline biomedical titanium and titanium alloys by ECAP[J]. Rare Metal Materials and Engineering,2023,52(5):1673-1682.

[5]徐淑波, 赵国群, 栾贻国,等. 等通道弯角挤压变形机理分析与工艺路线研究[J]. 中国机械工程, 2006(S1): 110-114.

Xu S B, Zhao G Q, Luan Y G, et al. Deformation behavior analysis and process investigation of equal channel angular pressing [J]. China Mechanical Engineering, 2006(S1): 110-114.

[6]胡雨龙, 刘晓燕, 高飞龙, 等. TA15钛合金室温等径弯曲通道挤压模拟与试验研究[J]. 塑性工程学报,2022,29(6): 33-40.

Hu Y L, Liu X Y, Gao F L, et al. Simulation and test research of equal channel angular pressing of TA15 titanium alloy at room temperature [J]. Journal of Plasticity Engineering, 2022,29(6): 33-40.

[7]Semiatin S L, Delo D P, Segal V M, et al. Workability of commercial-purity titanium and 4340 steel during equal channel angular extrusion at cold-working temperatures[J]. Metallurgical and Materials Transactions A, 1999, 30: 1425-1435.

[8]Du F P, Liu F, Jiao Q Y, et al. Influence of ECAP temperature on the mechanical properties of pure Ti [J]. Journal of Mechanical Strength, 2017, 39(3): 692-696.

[9]Zadeh L A. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets and Systems, 1999, 100(S1):9-34.

[10]Korkut I, Acir A, Boy M. Application of regression and artificial neural network analysis in modelling of tool-chip interface temperature in machining[J]. Expert Systems with Applications, 2011, 38(9): 11651-11656.

[11]夏洪永, 李军国. 基于PLC的锻造加热炉温度智能控制系统设计[J]. 热加工工艺, 2019, 48(9): 180-182,185.

Xia H Y, Li J G. Design of temperature intelligent control system for forging heating furnace based on PLC [J]. Hot Working Technology, 2019,48(9):180-182,185.

[12]Gao Z, Trautzsch T A, Dawson J G. A stable self-tuning fuzzy logic control system for industrial temperature regulation[J]. IEEE Transactions on Industry Applications, 2002, 38(2): 414-424.

[13]Xie X L, Long Z. Fuzzy PID Temperature control system design based on single chip microcomputer[J]. International Journal of Online Engineering, 2015, 11(8): 29-33.

[14]王克平, 赵西城, 杨西荣. 工业纯钛ECAP温变形的力学性能及热稳定性[J]. 热加工工艺, 2011, 40(20): 7-10.

Wang K P, Zhao X C, Yang X R. Mechanical properties and thermal stability of CP-Ti processed by ECAP at intermediate temperature [J]. Hot Working Technology, 2011, 40(20): 7-10.

[15]Huang Y, Figueiredo R B, Baudin T, et al. Evolution of strength and homogeneity in a magnesium AZ31 alloy processed by high-pressure torsion at different temperatures[J]. Advanced Engineering Materials, 2012, 14(11): 1018-1026.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9