网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
超大型辊锻机气动干式离合器动作时间参数的数值模拟与分析
英文标题:Numerical simulation and analysis on action time parameters for pneumatic dry clutch of super-large roll forging machine
作者:高俊峰 徐悦鹏 敖茜 郑子豪 杨勇 石一磬 
单位:中国机械总院集团北京机电研究所有限公司 
关键词:超大型辊锻机 气动干式离合器 动作时间参数 摩擦结合时间 活塞复位时间 
分类号:TH133.4
出版年,卷(期):页码:2024,49(10):166-172
摘要:

 以某超大型辊锻机的气动干式离合器为研究对象,通过数学建模与数值模拟方法,对离合器动作时间进行分析,建立了离合器动作时间参数以及各阶段时间参数及其影响因素的数学模型,得到了各时间参数与其影响因素间的相互关系,获得了相关参数的关系曲线。结果表明,摩擦结合时间与活塞复位时间在离合器动作时间中的占比很大,二者对动作时间的影响尤其显著,并进一步确定了影响离合器动作时间的主要参数,得到了影响离合器动作时间的一般规律。为超大型辊锻机气动干式离合器的设计优化及其对辊锻机工作性能的提升提供了理论基础与依据。

 For the pneumatic dry clutch of a super-large roll forging machine, the clutch action time was analyzed by mathematical modeling and numerical simulation methods, and the mathematical models of clutch action time parameters and time parameters of various stages as well as their influencing factors were established. Then, the mutual relationship between the each time parameter and their influencing factors were obtained, and the mutual relationship curves of relevant parameters were acquired. The results show that the friction engagement time and piston reset time account for a large proportion in the clutch action time, and both of them have a significant impact on the action time. The main parameters affecting the clutch action time are further determined, and the general rule affecting the clutch action time is obtained, which provides theoretical basis and foundation for the design and optimization of pneumatic dry clutch of super-large roll forging machine and the improvement of working performance on the roll forging machine.

基金项目:
作者简介:
作者简介:高俊峰(1987-),男,博士,工程师,E-mail:aresfgjunfeng@163.com
参考文献:

[1]曹树森, 于江. 我国辊锻机的发展现状及展望[J]. 中国重型装备, 2015(1): 18-20,23.


Cao S S, Yu J. Current status and forecasts of roll forging press development in China[J]. China Heavy Equipment, 2015(1): 18-20,23.

[2]郭文凤, 刘春梅, 王云, 等. 柔性辊压成形技术及装备发展现状与展望[J]. 现代制造工程, 2024(1): 151-161.

Guo W F, Liu C M, Wang Y, et al. Development status and prospect of flexible roll forming technology and equipment[J]. Modern Manufacturing Engineering, 2024(1): 151-161.


[3]何志坚, 张莹, 徐果. 机械压力机分体式离合器制动器的结构及维护方法[J]. 装备制造技术, 2017(7): 196-197,208.

He Z J, Zhang Y, Xu G. Construction and maintenance method of split clutch brake of mechanical press[J]. Equipment Manufacturing Technology, 2017(7): 196-197,208.

[4]宋玉泉, 王明辉, 宋家旺, 等. 精成形辊锻机[J]. 塑性工程学报, 2007, 14(1): 72-75.

Song Y Q, Wang M H, Song J W, et al. Precision forming roll-forging machine[J]. Journal of Plasticity Engineering, 2007, 14(1): 72-75.

[5]陈杰鹏.1250 mm辊锻机关键部件静力学与动力学分析[D].北京:中国机械科学研究总院集团有限公司,2013.

Chen J P. Statics and Dynamic Analysis of the Key Component of 1250 mm Roll-forging Machine[D].Beijing:China Academy of Machinery Science and Technology Group Co., Ltd., 2013.

[6]石一磬, 杨勇, 李海涛, 等. 1600 mm辊锻机及其在轨道交通用车轴生产中的应用[J]. 锻压技术,2022, 47(6): 209-213.

Shi Y Q, Yang Y, Li H T, et al. 1600 mm roll forging machine and its application in production of axles used in rail transit[J]. Forging & Stamping Technology, 2022, 47(6): 209-213.

[7]龚立巍, 许楠, 袁佳俊, 等. 门式压力机干式离合器故障浅析[J]. 锻压装备与制造技术, 2021, 56(3): 23-29.

Gong L W, Xu N, Yuan J J, et al. Analysis on the failure of dry clutch of gantry press[J]. China Metalforming Equipment & Manufacturing Technology, 2021, 56(3): 23-29.

[8]李雪, 赵升吨, 崔敏超, 等. 湿式离合制动器在热模锻压力机上的应用现状分析[J]. 锻压装备与制造技术, 2015,50(1):16-21.

Li X, Zhao S D, Cui M C, et al. Application status analysis of wet clutch/brake in hot die forging press[J]. China Metalforming Equipment & Manufacturing Technology, 2015,50(1):16-21.

[9]张军. 超大型低惯量干式摩擦离合制动器设计研究[J]. 锻压装备与制造技术, 2020, 55(5): 27-30.

Zhang J. Design and research of super large low inertia dry friction clutch brake[J]. China Metalforming Equipment & Manufacturing Technology, 2020, 55(5): 27-30.

[10]严宏志, 张美玉, 赵鹏, 等. 弹簧间隙大小及均匀性对离合器动态性能的影响[J]. 机械设计与研究, 2017, 33(3):82-86.

Yan H Z, Zhang M Y, Zhao P, et al. The effect on the performance of spring clutch in different conditions of gap size and uniformity of the spring[J]. Machine Design and Research, 2017, 33(3):82-86.

[11]Chen H, Sun Y. Development and application of reliability test platform for high-speed punch machine clutch brake system[J]. Journal of Mechanical Science and Technology, 2017,31(1):53-61.

[12]谢关煊. 机械压力机摩擦离合器与制动器摩擦块的计算[J]. 锻压机械, 1993(5):26-28.

Xie G X. Calculation of friction blocks for friction clutches and brakes in mechanical press[J]. Metalforming Machinery, 1993(5):26-28.

[13]Kwon B, Kim H. Dynamic analysis of shift quality for clutch to clutch controlled automatic transmission[J]. Journal of Mechanical Science and Technology, 2012,14(12):1348-1357.

[14]端武治, 刘俊, 倪胜伟, 等. 一种机械压力机分体式离合器制动器的控制气路[J]. 锻压装备与制造技术, 2019,54(2):36-38.

Duan W Z, Liu J, Ni S W, et al. One kind of split clutch brake gas path control for mechanical press[J]. China Metalforming Equipment & Manufacturing Technology, 2019,54(2):36-38.

[15]陈钟秀, 顾飞燕, 胡望明. 化工热力学[M].3版. 北京: 化学工业出版社, 2012.

Chen Z X, Gu F Y, Hu W M. Chemical Engineering Thermodynamics[M]. 3rd Edition. Beijing: Chemical Industry Press, 2012.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9