网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
难变形金属齿轮坯复杂精锻件锻后余热热处理工艺
英文标题:Heat treatment process of residual heat after forging of complex precision forgings for difficult-to-deform metal gear blank
作者:肖刚锋1 梁敬峰1 刘梅华2 徐尔灵2 夏琴香1 利义旭2 
单位:1.华南理工大学 机械与汽车工程学院 2.广东韶铸精锻有限公司 
关键词:齿轮坯精锻件 余热热处理 等温正火 微观组织 硬度 
分类号:TG156
出版年,卷(期):页码:2024,49(10):203-208
摘要:

针对齿轮坯精锻件锻后热处理耗能高、效率低等问题,提出一种利用锻造余热进行等温正火的余热热处理工艺,在保证锻件性能的基础上,减少了热处理时间、节省了能源消耗。基于齿轮坯的尺寸及材料特点,拟定了锻后余热热处理工艺,并使用Deform软件建立了锻后余热热处理有限元模拟模型,研究了热处理过程中锻件的温度、等效应力和微观组织的分布规律。结果表明:热处理过程中,齿轮坯内孔上端面降温速度最快、珠光体含量最高,齿轮坯外圈心部降温速度最慢、珠光体含量最低;在内壁处产生最大等效应力,约为60 MPa。在所制定的锻后余热热处理工艺,可获得合格的微观组织和硬度,大幅减少了等温正火热处理工艺中加热、保温的能源和时间。

For the problems of high energy consumption and low efficiency in heat treatment after forging of precision forgings for gear blank, an isothermal normalizing heat treatment process of residual heat by using forging residual heat was proposed, which reduced the heat treatment time and saved the energy consumption on the basis of ensuring the performance of forgings. Then, according to the dimension and material characteristics of gear blank, the heat treatment process of residual heat after forging was developed, and the finite element simulation model for the heat treatment process of residual heat after forging was established by software Deform. Furthermore, the distribution laws of temperature, equivalent stress and microstructure of forgings during heat treatment were studied. The results show that during the heat treatment process, the cooling speed for the upper end face of inner hole of gear blank is the fastest, and the pearlite content is the highest, while the cooling speed for the outer ring center of gear blank is the slowest, and the pearlite content is the lowest. The maximum equivalent stress generated at the inner wall is about 60 MPa. Thus, the developed heat treatment process of residual heat after forging can obtain qualified microstructure and hardness, and greatly reduces the energy and time of heating and holding in the isothermal normalizing heat treatment process.

基金项目:
广东省科技专项资金项目(210907154533470)
作者简介:
作者简介:肖刚锋(1987-),男,博士,副教授,E-mail:xiaogf@scut.edu.cn;通信作者:夏琴香(1964-),女,博士,教授,E-mail:meqxxia@scut.edu.cn
参考文献:

[1]陈晖,周细应.汽车齿轮钢的研究进展[J].材料科学与工程学报,2011,29(3):478-482.


Chen H, Zhou X Y. Research progress of gear steel for automobiles[J].Journal of Materials Science and Engineering,2011,29(3):478-482.

[2]刘玉冰,管延锦,李玉琦,等. 激光热处理对7CrSiMnMoV模具钢组织与性能的影响[J]. 锻压技术,2023,48(11):185-195.

Liu Y B,Guan Y J,Li Y Q,et al. Influence of laser heat treatment on microstructure and properties for 7CrSiMnMoV die steel [J]. Forging & Stamping Technology,2023,48(11):185-195.

[3]黄正. 船用大型锻件余热热处理工艺方法研究及参数优化[D]. 广州:华南理工大学,2011.

Huang Z. Research on Waste Heat Heat Treatment Process Method and Parameter Optimization of Marine Large Forgings[D]. Guangzhou: South China University of Technology, 2011.

[4]陈希原. 42CrMo钢锻件的锻造余热淬火热处理[J]. 锻造与冲压,2008(10):28,30,32,34.

Chen X Y. Forging residual heat quenching heat treatment of 42CrMo steel forgings[J]. Forging & Metalforming, 2008(10): 28,30,32,34.

[5]童洲.5CrNiMo热作模具钢锻后余热热处理工艺研究[D].广州:华南理工大学, 2014.

Tong Z. 5CrNiMo Hot Work Mold Steel After Forging Residual Heat Treatment Process Research[D]. Guangzhou: South China University Of Technology, 2014.

[6]李一振,黄正,夏琴香. 轴类大锻件锻后余热热处理工艺研究[J]. 广东造船,2012,31(3):43-46, 51.

Li Y Z, Huang Z, Xia Q X. Research on heat treatment process for afterheat utilization of long-shaft heavy forgings[J]. Guangdong Shipbuilding, 2012, 31(3): 43-46, 51.

[7]翟崇琳,苗进,张俊,等. 50CrV钢汽车稳定杆热处理工艺优化[J]. 热加工工艺,2020,49(14):143-145, 148.

Zhai C L, Miao J, Zhang J, et al. Optimization of heat treatment technology of 50CrV steel automobile stabilizer[J]. Hot Working Technology, 2020, 49(14): 143-145, 148.

[8]樊东黎,徐跃明,佟晓辉.热处理技术数据手册[M].2版.北京:机械工业出版社,2006.

Fan D L, Xu Y M, Tong X H. Heat Treatment Data Manual[M]. 2nd Edition. Beijing: China Machine Press, 2006.

[9]刘澄,杨晨,赵振波,等. 多步连续冷却等温正火对20CrMnTiH钢锻后显微组织及性能的影响[J]. 金属热处理,2017,42(8):93-97.

Liu C, Yang C, Zhao Z B, et al. Effect of multiple-step continuous cooling and isothermal normalizing on microstructure and mechanical properties of 20CrMnTiH forged steel[J]. Heat Treatment of Metals, 2017, 42(8):93-97.

[10]崔忠圻,覃耀春.金属学与热处理[M].2版.北京:机械工业出版社,2007.

Cui Z Q, Qin Y C. Metallurgy and Heat Treatment [M]. 2nd Edition. Beijing: China Machine Press, 2007.

[11]耿学明,黎定旺. 大型锻件的调质热处理实践[J]. 金属加工(热加工),2010(5): 40-41,45.

GengX M, Li D W. Practice of tempering heat treatment for large forgings[J]. MW Metal Forming, 2010(5): 40-41, 45.

[12]陈再良,吕东显,曹明宇,等. 金属热处理残余应力与开裂失效关系的探讨[J]. 金属热处理,2007,32(S1):40-44.

Chen Z L, Lyu D X, Cao M Y, et al. Study on residual stress and crack failure in metal heat treatment[J]. Heat Treatment of Metals, 2007,32(S1):40-44.

[13]张建,李长生,李彬周,等. 20CrNi2MoV钢连续冷却过程中的相变行为[J]. 辽宁科技大学学报,2017,40(1):60-66.

Zhang J, Li C S, Li B Z, et al. Continuous cooling transformation behavior of 20CrNi2MoV steel[J]. Journal of University of Science and Technology Liaoning, 2017, 40(1):60-66.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9