网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TB6钛合金两相区变形行为及组织演变规律
英文标题:Deformation behavior and microstructure evolution law of two-phase region for TB6 titanium alloy
作者:徐平安1 花魁2 郭楠1 李智勇1 王海鹏2 刘保亮2 宋阿敏2 
单位:1.昌河飞机工业(集团)有限责任公司 2.西安三角防务股份有限公司 
关键词:TB6钛合金 热变形 变形温度 应变速率 变形量 组织演变 
分类号:TG311;TG156
出版年,卷(期):页码:2024,49(10):238-247
摘要:

 通过对TB6钛合金棒料进行不同参数下的热模拟压缩实验,得到了TB6钛合金的真应力-真应变曲线,并对比分析了等效应变为0.9时,不同变形温度(700~790 ℃)和应变速率(0.001~1 s-1)下TB6钛合金两相区的组织演变规律以及一定变形条件下(760 ℃、0.1 s-1)的再结晶行为。结果表明:变形温度过高会导致α相向β相转变的数量增多,变形温度以700~760 ℃为宜;流动应力与应变速率呈正相关,流动应力的增加延缓了动态回复和动态再结晶动力学过程,不利于锻件的精确塑性成形,应变速率以0.001~0.1 s-1为宜;变形量的增加可促使长条状α相发生再结晶球化转变为等轴状晶粒,却不利于合金的韧性,变形量以40%左右为宜。变形温度为760 ℃、应变速率为0.1 s-1条件下,大、中、小3种角度晶界占比分别约为8.6%、31.7%和59.8%,α相、β相的再结晶分数分别约为14.8%和4.99%,在某些方向上两种晶粒结构均表现为较强的织构;TB6钛合金两相区热变形的失稳区主要集中于变形温度为700~760 ℃、应变速率为0.01832~1 s-1的区域,进一步地绘制了相应的热加工图。

The true stress-true strain curve of TB6 titanium alloy was obtained by conducting thermal simulation compression experiments with different parameters on TB6 titanium alloy bars, and the microstructure evolution law of the two-phase region for TB6 titanium alloy under different deformation temperatures (700-790 ℃), strain rates (0.001-1 s-1), and the recrystallization behavior under certain deformation conditions (760 ℃, 0.1 s-1) were compared and analyzed when the equivalent stain was 0.9. The results show that excessive deformation temperature leads to an increase in the number of α to β phase transition, and the appropriate deformation temperature is 700-760 ℃. The flow stress is positively correlated with the strain rate, and the increasing of flow stress delays the kinetic process of dynamic recovery and dynamic recrystallization, which is not conducive to the precise plastic forming of forgings. The appropriate strain rate is 0.001-0.1 s-1. The increasing of deformation amount can promote the recrystallization and spheroidization of the elongated α phase into the equiaaxial grain, but it is not conducive to the toughness of alloy, and the appropriate deformation amount is about 40%. Under the conditions of the deformation temperature of 760 ℃ and the strain rate of 0.1 s-1, the proportion of large, medium and small angle grain boundaries is about 8.6%, 31.7% and 59.8%, respectively. The recrystallization fractions of α and β phases are about 14.8% and 4.99%, respectively. In some directions, both grain structures exhibit strong texture. The unstable region of thermal deformation for TB6 titanium alloy two-phase region is mainly concentrated in the region with the deformation temperature of 700-760 ℃ and the strain rate of 0.01832-1 s-1, and the corresponding thermal processing diagrams are drawn further.

基金项目:
国家重点研发计划资助项目(2022XX5100)
作者简介:
作者简介:徐平安(1976-),男,学士,高级工程师,E-mail:116049213@qq.com;通信作者:花魁(1990-),男,硕士,工程师,E-mail:602583573@qq.com
参考文献:

[1]李妮.TB6钛合金的热变形行为及锻件热成形模拟[D].贵阳:贵州大学,2020.


Li N.Hot Deformation Behaviors and Hot Forming Simulation for Titanium Alloy of Forging TB6[D].Guiyang:Guizhou University,2020.

[2]上官姝哲.基于加工图技术的Ti3Al基合金锻造工艺优化[D].南昌:南昌航空大学,2012.

Shangguan S Z.Optimization of Forging Process of Ti3Al Base Alloy Based on Machining Diagram Technology[D]. Nanchang:Nanchang Aeronautical University,2012.

[3]向彪,张鹏,崔明亮.TB6钛合金的热加工工艺优化与组织预测[J].塑性工程学报,2022,29(7):107-118.

Xiang B,Zhang P,Cui M L.Hot working process optimization and microstructure prediction of TB6 titanium alloy[J].Journal of Plasticity Engineering,2022,29(7):107-118.

[4]欧阳德来.TB6和TA15钛合金β锻组织演变及动态再结晶行为研究[D].南京:南京航空航天大学,2011.

Ouyang D L.Study on Microstructure Evolution and Dynamic Recrystallization Behavior of TB6 and TA15 Titanium Alloys β Forging[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2011.

[5]GJB 2218A—2018,航空用钛及钛合金棒材和锻坯规范[S].

GJB 2218A—2018,Specification for titanium and titanium alloy bars and forgings stocks for aircraft[S].

[6]《中国航空材料手册》编辑委员会.中国航空材料手册 [M]. 2版.北京:中国标准出版社,2001.

China Aeronautical Materials Manual Editorial Committee. China Aeronautical Materials Manual [M]. 2nd Edition. Beijing: Standards Press of China,2001.

[7]钟玉,屈金山,陈文静,等.TC4钛合金的电子束焊[J].热加工工艺,2007,36(15):24-26.

Zhong Y,Qu J S,Chen W J,et al.Electron beam welding of TC4 alloy[J].Hot Working Technology,2007,36(15):24-26.

[8]崔均辉,杨合,孙志超.TB6钛合金热变形行为及本构模型研究[J].稀有金属材料与工程,2012,41(7):1166-1170.

Cui J H,Yang H,Sun Z C.Research on hot deformation behavior and constitutive model of titanium alloy TB6[J].Rare Metal Materials and Engineering,2012,41(7):1166-1170.

[9]吴成宝,杨合,孙志超,等.片层组织TA15钛合金的热变形行为及组织球化[J].中国有色金属学报,2010,20(Z1):94-99.

Wu C B,Yang H,Sun Z C,et al.Hot deformation behavior and microstructure globularization of TA15 with lamellar structure[J].The Chinese Journal of Nonferrous Metals,2010,20(Z1):94-99.

[10]鲍如强,黄旭,黄利军.Ti-10V-2Fe-3Al合金热工艺的研究[J].稀有金属,2005,29(2):214-218.

Bao R Q,Huang X,Huang L J.Investigation on hot processes of Ti-10V-2Fe-3Al alloy[J].Chinese Journal of Rare Metals,2005,29(2):214-218.

[11]陈勇.TA15钛合金热强力旋压组织演化规律及强化机理研究[D].哈尔滨:哈尔滨工业大学,2014.

Chen Y.Study on Microstructure Evolution and Strengthening Mechanism of TA15 Titanium Alloy by Hot Strength Spinning[D].Harbin:Harbin Institute of Technology,2014.

[12]郑群辉.TC27钛合金的热变形行为及其组织演变规律[D].南昌:南昌航空大学,2015.

Zheng Q H.Thermal Deformation Behavior and Microstructure Evolution of TC27 Titanium Alloy[D]. Nanchang:Nanchang Aeronautical University,2015.

[13]屈磊. Beta钛合金中{332}<113>孪生行为及孪晶在热处理时的演化[D]. 西安:西安建筑科技大学,2013.

Qu L.Twinning Behavior of {332}<113> in Beta Titanium Alloys and Evolution of Twins During Heat Treatment[D].Xi′an: Xi′an University of Architecture and Technology, 2013.

[14]吴琳.锻态TB6钛合金热变形行为研究及加工工艺参数优化[D].南昌:南昌航空大学,2010.

Wu L.Study on Hot Deformation Behavior of Wrought TB6 Titanium Alloy and Optimization of Processing Parameters[D]. Nanchang:Nanchang Aeronautical University,2010.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9