[1] Hosseini-Tehrani P, Nikahd M. Two materials S-frame representation for improving crashworthiness and lightening\[J]. Thin-Walled Structures, 2006, 44(4): 407-414.
\[2] Kim H J, McMillan C, Keoleian G A, et al. Greenhouse gas emissions payback for lightweighted vehicles using aluminum and high-strength steel\[J]. Journal of Industrial Ecology, 2010, 14(6): 929-946.
\[3] Hornbogen E. Hundred years of precipitation hardening\[J]. Journal of Light Metals, 2001, 1(2): 127-132.
\[4] Liu Y, Zhu Z J, Wang Z J, et al. Flow and friction behaviors of 6061 aluminum alloy at elevated temperatures and hot stamping of a B-pillar\[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 4063-4083.
\[5] Teller M, Ross I, Temmler A, et al. Investigation of friction conditions in dry metal forming of aluminum by extended conical tube-upsetting tests\[J]. Key Engineering Materials, 2018, 767: 189-195.
\[6] Merklein M, Johannes M, Lechner M, et al. A review on tailored blanks-Production, applications and evaluation\[J]. Journal of Materials Processing Technology, 2014, 214(2): 151-164.
\[7] Yue Z M, Chu X R, Gao J. Influence of ductile damage on springback prediction of aluminum alloy sheet under changing loading paths\[J]. Procedia Manufacturing, 2018, 15: 716-721.
\[8] Deng L, Wang X Y, Jin J S, et al. Springback and hardness of aluminum alloy sheet part manufactured by warm forming process using non-isothermal dies\[J]. Procedia Engineering, 2017, 207: 2388-2393.
\[9] Yanagimoto J, Oyamada K, Nakagawa T. Springback of high-strength steel after hot and warm sheet formings\[J]. CIRP Annals, 2005, 54(1): 213-216.
\[10]修天洵, 王伟, 张毅,等. 800 ℃高温下SKD61/B1500HS摩擦界面的BN粉末润滑特性研究\[J].中国科技论文,2018, 13(16): 1822-1828.
Xiu T X, Wang W, Zhang Y, et al. Investigation on lubrication properties of BN powder for B1500HS-tool steel SKD61 tribo-pair under 800 ℃ high temperature\[J]. China Sciencepaper, 2018, 13(16): 1822-1828.
\[11]Wang W R, Zhao Y Z, Wang Z M, et al. A study on variable friction model in sheet metal forming with advanced high strength steels\[J]. Tribology International, 2016, 93: 17-28.
\[12]Lenard J G. The effect of roll roughness on the rolling parameters during cold rolling of an aluminum alloy\[J]. Journal of Materials Processing Technology, 2004, 152(2): 144-153.
\[13]Flitta I, Sheppard T. Nature of friction in extrusion process and its effect on material flow\[J]. Materials Science and Technology, 2003, 19(7): 837-846.
\[14]Hu C L, Ding T R, Ou H G, et al. Effect of tooling surface on friction conditions in cold forging of an aluminum alloy\[J]. Tribology International, 2019, 131: 353-362.
\[15]章小峰, 张祥林, 王爱华, 等. 铝合金板成形中摩擦与润滑的研究进展\[J]. 金属热处理, 2007, 32(12): 11-17.
Zhang X F, Zhang X L, Wang A H, et al. Research and development of friction and lubrication for aluminum alloy sheet forming\[J]. Heat Treatment of Metals, 2007, 32(12): 11-17.
\[16]Schedin E. Galling mechanisms in sheet forming operations\[J]. Wear, 1994, 179(1-2): 123-128.
\[17]Flegler F, Neuhuser S, Groche P. Influence of sheet metal texture on the adhesive wear and friction behavior of EN AW-5083 aluminum under dry and starved lubrication\[J]. Tribology International, 2020, 141: 105956.
\[18]Mori K, Abe Y, Miyazawa S. Warm stamping of ultra-high strength steel sheets at comparatively low temperatures using rapid resistance heating\[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108: 3885-3891.
\[19]Karupannasamy D K, Hol J, de Rooij M B, et al. A friction model for loading and reloading effects in deep drawing processes\[J]. Wear, 2014, 318(1-2): 27-39.
\[20]Karbasian H, Tekkaya A E. A review on hot stamping\[J]. Journal of Materials Processing Technology, 2010, 210(15): 2103-2118.
\[21]Pereira M P, Yan W, Rolfe B F. Sliding distance, contact pressure and wear in sheet metal stamping\[J]. Wear, 2010, 268(11-12): 1275-1284.
\[22]Wang Z, Dohda K, Haruyama Y. Effects of entraining velocity of lubricant and sliding velocity on friction behavior in stainless steel sheet rolling\[J]. Wear, 2006, 260(3): 249-257.
\[23]Liu X C, Ji K, El Fakir O, et al. Determination of the interfacial heat transfer coefficient for a hot aluminum stamping process\[J]. Journal of Materials Processing Technology, 2017, 247: 158-170.
\[24]Fan X B, He Z B, Zhou W X, et al. Formability and strengthening mechanism of solution treated Al-Mg-Si alloy sheet under hot stamping conditions\[J]. Journal of Materials Processing Technology, 2016, 228: 179-185.
\[25]Gali O A, Riahi A R, Alpas A T. The tribological behavior of AA5083 alloy plastically deformed at warm forming temperatures\[J]. Wear, 2013, 302(1-2): 1257-1267.
\[26]Wang L L, He Y, Zhou J, et al. Effect of temperature on the frictional behavior of an aluminum alloy sliding against steel during ball-on-disc tests\[J]. Tribology International, 2010, 43(1-2): 299-306.
\[27]Liu Y, Zhu B, Wang K, et al. Friction behaviors of 6061 aluminum alloy sheets in hot stamping under dry and lubricated conditions based on hot strip drawing test\[J]. Tribology International, 2020, 151: 106504.
\[28]Rigas N, Merklein M. Characterization of the tribological behavior of different tool coatings and dry lubricant for high-strength aluminum alloys at elevated temperatures\[J]. Advanced Engineering Materials, 2023, 25(15): 2201650.
\[29]Jain M, Allin J, Bull M J. Deep drawing characteristics of automotive aluminum alloys\[J]. Materials Science and Engineering: A, 1998, 256(1-2): 69-82.
\[30]吴佳松,蒋怡涵,王武荣,等. 7075铝合金板材热冲压成形中的高温摩擦\[J]. 工程科学学报, 2020, 42(12): 1631-1638.
Wu J S, Jiang Y H, Wang W R, et al. High-temperature friction of 7075 aluminum alloy sheet during hot stamping\[J]. Chinese Journal on Engineering, 2020, 42(12): 1631-1638.
\[31]Olsson D D, Bay N, Andreasen J L. Prediction of limits of lubrication in strip reduction testing\[J]. CIRP Annals, 2004, 53(1): 231-234.
\[32]Yang X, Liu X C, Liu H L, et al. Experimental and modelling study of friction evolution and lubricant breakdown behavior under varying contact conditions in warm aluminum forming processes\[J]. Tribology International, 2021, 158: 106934.
\[33]Xia J S, Zhao J, Dou S S. Friction characteristics analysis of symmetric aluminum alloy parts in warm forming process\[J]. Symmetry, 2022, 14(1): 166.
\[34]Hanna M D. Tribological evaluation of aluminum and magnesium sheet forming at high temperatures\[J]. Wear, 2009, 267(5-8): 1046-1050.
\[35]Zhou J, Yang X M, Wang B Y, et al. Springback prediction of 7075 aluminum alloy V-shaped parts in cold and hot stamping\[J]. The International Journal of Advanced Manufacturing Technology, 2022,119: 203-216.
\[36]Esmaeilpour R, Tiji S A N, Kim H, et al. Stamping of a cross-shaped part with 5052, 5754 and 6016 aluminum alloy sheets-experimental and finite element analysis comparison\[A].IOP Conference Series: Materials Science and Engineering\[C]. San Francisco, CA: IOP Publishing, 2019.
\[37]Jin J S, Wang X Y, Deng L, et al. A single-step hot stamping-forging process for aluminum alloy shell parts with nonuniform thickness\[J]. Journal of Materials Processing Technology, 2016, 228: 170-178.
\[38]Wu X H, Zhao G Q, Luan Y G, et al. Numerical simulation and die structure optimization of an aluminum rectangular hollow pipe extrusion process\[J]. Materials Science and Engineering: A, 2006, 435: 266-274.
\[39]Duan X J, Sheppard T. Simulation and control of microstructure evolution during hot extrusion of hard aluminum alloys\[J]. Materials Science and Engineering: A, 2003, 351(1-2): 282-292.
\[40]Yu Z H, Wang Y S, Xiu W, et al. Numerical and Experimental Study on cold rolling process of 5B02 aluminum alloy tubes\[A].Journal of Physics: Conference Series\[C].Nannig: IOP Publishing, 2024.
\[41]Gong H, Cao X, Liu Y Q, et al. Simulation and experimental study on the inhomogeneity of mechanical properties of aluminum alloy 7050 plate\[J]. Metals, 2020, 10(4): 515-524.
\[42]Kim Y H, Ryou T K, Choi H J, et al. An analysis of the forging processes for 6061 aluminum-alloy wheels\[J]. Journal of Materials Processing Technology, 2002, 123(2): 270-276.
\[43]Scholz P, Brner R, Kühn R, et al. Dry forming of aluminum sheet metal: Influence of different types of forming tool microstructures on the coefficient of friction\[J]. Key Engineering Materials, 2015, 651: 516-521.
\[44]Rusin N M, Skorentsev A L, Kolubaev E A. Dry friction of pure aluminum against steel\[J]. Journal of Friction and Wear, 2016, 37: 86-93.
\[45]Steiner J, Merklein M. Investigation of influencing parameters for tribological conditions in dry forming processes\[J]. Acta Metallurgica Sinica (English Letters), 2015, 28: 1435-1441.
\[46]Dou S S, Xia J S. Analysis of sheet metal forming (Stamping process): A study of the variable friction coefficient on 5052 aluminum alloy\[J]. Metals, 2019, 9(8): 853-8868.
\[47]Sabet A S, Domitner J, ksüz K I, et al. Tribological investigations on aluminum alloys at different contact conditions for simulation of deep drawing processes\[J]. Journal of Manufacturing Processes, 2021, 68: 546-557.
\[48]Bay N, Azushima A, Groche P, et al. Environmentally benign tribo-systems for metal forming\[J]. CIRP Annals, 2010, 59(2): 760-780.
\[49]Yahaya A, Samion S, Musa M N, et al. Determination of friction coefficient in the lubricated ring upsetting with palm kernel oil for cold forging of aluminum alloys\[J]. Jurnal Tribologi, 2020, 25: 16-28.
\[50]Van Beek A. Advanced Engineering Design\[M]. Delft: Delft University of Technology, 2006.
\[51]Wang C G, Ma R, Zhao J, et al. Calculation method and experimental study of coulomb friction coefficient in sheet metal forming\[J]. Journal of Manufacturing Processes, 2017, 27: 126-137.
\[52]Kim Y S, Jain M K, Metzger D R. Determination of pressure-dependent friction coefficient from draw-bend test and its application to cup drawing\[J]. International Journal of Machine Tools and Manufacture, 2012, 56: 69-78.
\[53]Trzepiecinski T, Lemu H G. Recent developments and trends in the friction testing for conventional sheet metal forming and incremental sheet forming\[J]. Metals, 2019, 10(1): 47-80.
\[54]邓亮,徐冰倩.一种模拟热成形工况的高温摩擦试验机的设计及探讨\[J].润滑与密封, 2023, 48(6): 180-186.
Deng L, Xu B Q. Design and discussion of a new high-temperature tribological test machine simulating hot stamping conditions\[J]. Lubrication Engineering, 2023, 48(6): 180-186.
\[55]Liu X J, Liewald M, Becker D. Effects of rolling direction and lubricant on friction in sheet metal forming\[J]. Journal of Tribology,2009, 131(4):042101.
\[56]de Argandoa E S, Zabala A, Galdos L, et al. The effect of material surface roughness in aluminum forming\[J]. Procedia Manufacturing, 2020, 47: 591-595.
\[57]Pop M F, Neag A V, Sas-Boca I M. Experimental and numerical study on the influence of lubrication conditions on AA6068 aluminum alloy cold deformation behavior\[J]. Materials, 2023, 16(5): 2045.
\[58]Lee S W, Lee J M, Joun M S. On critical surface strain during hot forging of lubricated aluminum alloy\[J]. Tribology International, 2020, 141: 105855.
\[59]Gao Y R, Li H X, Zhao D Y, et al. Advances in friction of aluminum alloy deep drawing\[J]. Friction, 2024, 12(3): 396-427.
\[60]Tenner J, Andreas K, Radius A, et al. Numerical and experimental investigation of dry deep drawing of aluminum alloys with conventional and coated tool surfaces\[J]. Procedia Engineering, 2017, 207: 2245-2250.
\[61]Zhou R, Cao J, Wang Q J, et al. Effect of EDT surface texturing on tribological behavior of aluminum sheet\[J]. Journal of Materials Processing Technology, 2011, 211(10): 1643-1649.
\[62]Funazuka T, Dohda K, Takatsuji N, et al. Effect of die coating on surface crack depth of hot extruded 7075 aluminum alloy\[J]. Friction, 2023, 11(7): 1212-1224.
\[63]Hu C L, Yin Q, Zhao Z. A novel method for determining friction in cold forging of complex parts using a steady combined forward and backward extrusion test\[J]. Journal of Materials Processing Technology, 2017, 249: 57-66.
\[64]Kalin M, Jerina J. The effect of temperature and sliding distance on coated (CrN, TiAlN) and uncoated nitrided hot-work tool steels against an aluminum alloy\[J]. Wear, 2015, 330: 371-379.
\[65]Yanagida A, Azushima A. Evaluation of coefficients of friction in hot stamping by hot flat drawing test\[J]. CIRP Annals, 2009, 58(1): 247-250.
\[66]Li L X, Peng D S, Liu J A, et al. An experimental study of the lubrication behavior of A5 glass lubricant by means of the ring compression test\[J]. Journal of Materials Processing Technology, 2000, 102(1-3): 138-142.
\[67]Podgornik B, Kosec T, Kocijan A, et al. Tribological behavior and lubrication performance of hexagonal boron nitride (h-BN) as a replacement for graphite in aluminum forming\[J]. Tribology International, 2015, 81: 267-275.
\[68]王佳贝,孔尚,胡文敬,等.石墨烯作为添加剂在两种成品润滑油中的应用可行性研究\[J]. 摩擦学学报,2022,42(4): 775-784.
Wang J B, Kong S, Hu W J, et al. Application feasibility of graphene as additive in two kinds of lubricating oil\[J]. Tribology,2022,42(4):775-784.
\[69]何熙,董瑞,马琳,等.二硫代二苯甲酸二异辛酯作为铜、铝合金润滑剂的摩擦学性能及机理研究\[J]. 摩擦学学报, 2023, 43(2):167-177.
He X, Dong R, Ma L, et al. Tribological properties and mechanism of diisooctyl dithiodibenzoate as a lubricant for copper and aluminum alloy\[J]. Tribology, 2023, 43(2): 167-177.
\[70]Hironaka S, Sakurai T. The effect of pentaerythritol partial ester on the wear of aluminum\[J]. Wear, 1978, 50(1): 105-114.
\[71]姚娜,李梅,李守海,等.油酸基极压水性润滑添加剂的合成及性能研究\[J].润滑与密封,2022,47(7):90-96.
Yao N, Li M, Li S H, et al. Study on synthesis and performance of oleic acid-based extreme pressure water-based lubricant additive\[J]. Lubrication Engineering, 2022, 47(7): 90-96.
\[72]Chen L, Tu N, Wei Q Y, et al. Inhibition of cold-welding and adhesive wear occurring on surface of the 6061 aluminum alloy by graphene oxide/polyethylene glycol composite water-based lubricant\[J]. Surface and Interface Analysis, 2022, 54(3): 218-230.
\[73]Kreivaitis R, Gumbyte· M, Treinyte· J. Investigation of tribological properties of environmentally friendly ionic liquids as a potential lubricity improving additives for water-based lubricants\[J]. Industrial Lubrication and Tribology, 2022, 74(3): 294-301.
\[74]Schell L, Sellner E, Massold M, et al. Tribology in warm and hot aluminum sheet forming: Transferability of strip drawing tests to forming trials\[J]. Advanced Engineering Materials, 2023,25 (15):2201900.
\[75]Hu Y, Wang L, Politis D J, et al. Development of an interactive friction model for the prediction of lubricant breakdown behavior during sliding wear\[J]. Tribology International, 2017, 110: 370-377.
\[76]丁娅, 陈炳耀, 杨善杰. 润滑油添加剂发展综述\[J].山东工业技术,2019(4):10,7.
Ding Y, Chen B Y, Yang S J. Overview of lubricant additive development\[J]. Journal of Shandong Industrial Technology, 2019(4): 10, 7.
\[77]Yu B J, Qian L M. Friction-induced nanofabrication: A review\[J]. Chinese Journal of Mechanical Engineering, 2021, 34: 1-26.
\[78]郑哲, 方建华, 王建华,等. 新型水溶性润滑添加剂的研究进展\[J]. 摩擦学学报, 2017, 37(3): 409-420.
Zheng Z, Fang J H, Wang J H, et al. The research progress of novel water-soluble lubricant additives\[J]. Tribology, 2017, 37(3): 409-420.
\[79]Yanagida A, Kurihara T, Azushima A. Development of tribo-simulator for hot stamping\[J]. Journal of Materials Processing Technology, 2010, 210(3): 456-460.
\[80]Decrozant-Triquenaux J, Pelcastre L, Courbon C, et al. High temperature tribological behaviour of PVD coated tool steel and aluminium under dry and lubricated conditions\[J]. Friction, 2021, 9: 802-821.
\[81]郑友华,李冀生,王平,等.二硫化钼基润滑涂层在润滑油中的作用机理及实际应用\[J].润滑与密封,2005(2):127-129,132.
Zheng Y H, Li J S, Wang P, et al. Mechanisms of the molybdenum disulfide solid lubricant film in lubrication and its applications\[J]. Lubricants Engineering, 2005(2): 127-129, 132.
\[82]Ngaile G, Botz F. Performance of graphite and boron-nitride-silicone based lubricants and associated lubrication mechanisms in warm forging of aluminum\[J]. Journal of Tribology, 2008, 130(2): 021801.
\[83]余均武,彭大暑,林启权,等.不锈钢拉深润滑剂的研制与应用\[J].湘潭大学自然科学学报,2004,26(3):116-119.
Yu J W, Peng D S, Lin Q Q, et al. Development of deep drawing lubrication oil for 304 stainless steel\[J]. Natural Science Journal of Xiangtan University, 2004, 26(3): 116-119.
\[84]Rapoport L, Leshchinsky V, Lapsker I, et al. Tribological properties of WS2 nanoparticles under mixed lubrication\[J]. Wear, 2003, 255(7-12): 785-793.
\[85]Ghiotti A, Simonetto E, Bruschi S. Influence of process parameters on tribological behavior of AA7075 in hot stamping\[J]. Wear, 2019, 426: 348-356.
\[86]Shatalov R L, Pham V K, Tran V Q. Investigation of the effect of various production lubricants on aluminum alloy strip rolling characteristics\[J]. Metallurgist, 2022, 66(1-2): 139-145.
\[87]Shatalov R L, Pham V H, Tran V Q. Influence of lubricants and contact pressure models on the rolling power along thin aluminum stripes\[J]. Metallurgist, 2021, 65: 660-672.
\[88]Dohda K, Wang Z. Effects of average lubricant velocity and sliding velocity on friction behavior in mild steel sheet forming\[J]. 1998, 120(4): 724-728.
\[89]Dohda K, Wang Z. Effects of lubricant velocity and sliding velocity on friction behavior in aluminum sheet rolling\[A].Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition\[C]. San Francisco, CA: ASME, 1995.
\[90]Prieske M, Hasselbruch H, Mehner A, et al. Friction and wear performance of different carbon coatings for use in dry aluminum forming processes\[J]. Surface and Coatings Technology, 2019, 357: 1048-1059.
\[91]Müller M, Hild R, Trauth D, et al. Investigation of different tribological systems during full forward impact extrusion of aluminum alloy EN AW 6082\[J]. Industrial Lubrication and Tribology, 2019, 72(6): 709-712.
\[92]吴立波,薛勇,张治民,等.铝合金筒体侧向挤压润滑条件分析及润滑剂配比研究\[J].轻合金加工技术, 2013, 41(8): 41-44.
Wu L B, Xue Y, Zhang Z M, et al. Lubricating condition analysis of cylinder lateral extrusion and study on lubricant burden\[J]. Light Alloy Fabrication Technology, 2013,41(8): 41-44.
\[93]李长虹.石墨对三氧化二铝/铜金属陶瓷复合材料摩擦磨损性能的影响\[J].摩擦学学报, 2004(6): 572-575.
Li C H. Study of graphite action in Al2O3-Cu matrix\[J]. Tribology, 2004(6): 572-575.
\[94]肖华,李保成,张星.铝合金温挤压用润滑剂试验研究\[J].热加工工艺,2011,40(5):110-111, 114.
Xiao H, Li B C, Zhang X. Experiment study of lubricant for warm extrusion of aluminum alloy\[J]. Hot Working Technology, 2011, 40(5): 110-111, 114.
\[95]Jerina J, Kalin M. Aluminum-alloy transfer to a CrN coating and a hot-work tool steel at room and elevated temperatures\[J]. Wear, 2015, 340: 82-89.
\[96]Jerina J, Kalin M. Initiation and evolution of the aluminum-alloy transfer on hot-work tool steel at temperatures from 20 ℃ to 500 ℃\[J]. Wear, 2014, 319(1-2): 234-244.
\[97]Birol Y. Sliding wear of CrN, AlCrN and AlTiN coated AISI H13 hot work tool steels in aluminum extrusion\[J]. Tribology International, 2013, 57: 101-106.
\[98]Yahaya A, Samion S. Friction condition of aluminum alloy AA6061 lubricated with bio-lubricant in cold forging test\[J]. Industrial Lubrication and Tribology, 2022, 74(4): 378-384.
\[99]Buchner B, Maderthoner G, Buchmayr B. Characterisation of different lubricants concerning the friction coefficient in forging of AA2618\[J]. Journal of Materials Processing Technology, 2008, 198(1-3): 41-47.
\[100]Alimirzaloo V, SheydayiGurchinQaleh S, MashhadiKeshtiban P, et al. Investigation of the effect of CuO and Al2O3 nanolubricants on the surface roughness in the forging process of aluminum alloy\[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231(12): 1595-1604.
\[101]Fann K J, Chen C C. Grain size in aluminum alloy 6061 under hot ring compression test and after T6 temper\[J]. Applied Sciences, 2017, 7(4): 372-384.
\[102]Sabet A S, Domitner J, Ristic′ A, et al. Effects of temperature on friction and degradation of dry film lubricants during sliding against aluminum alloy sheets\[J]. Tribology International, 2023, 180: 108205.
|