网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
12%Cr耐热钢裂纹萌生临界变形量
英文标题:Critical deformation amount of crack initiation for 12%Cr heat-resistant steel
作者:   刘建生 
单位:(太原科技大学 材料科学与工程学院 山西 太原 030024) 
关键词:12%Cr耐热钢 热锻 裂纹萌生 临界变形量 临界损伤值 
分类号:TG316
出版年,卷(期):页码:2024,49(9):12-17
摘要:

 以12%Cr耐热钢为研究对象,基于Gleeble-3800D热模拟试验机进行高温拉伸实验,得到不同变形温度和应变速率下的高温拉伸真应力-真应变曲线。结果显示:应变速率越大、温度越低时材料的抗拉强度及屈服强度越大;由高温拉伸断口微观组织可知,温度越高、应变速率越小,材料的塑性越好。结合高温拉伸实验与数值模拟方法确定了12%Cr耐热钢热锻过程中的临界损伤值,并进一步将裂纹萌生临界损伤值转化为实际热锻的临界变形量,建立了12%Cr耐热钢在给定变形温度和应变速率条件下热锻成形过程中的临界变形量模型,并在500 N液压机上进行了镦粗工艺验证,为超超临界转子锻造成形工艺提供了理论参考。

 For 12%Cr heat-resistant steel, the high-temperature tensile experiments were conducted by thermal simulation test machine Gleeble-3800D, and the high-temperature tensile true stress-true strain curves at different deformation temperatures and strain rates were obtained. The results show that the higher the strain rate and the lower the temperature, the greater the tensile strength and yield strength of  material. The microstructure of high-temperature tensile fracture indicates that the higher the temperature and the lower the strain rate, the better the plasticity of material. By combining the high-temperature tensile experiments and numerical simulation methods, the critical damage value during the hot forging process of 12%Cr heat-resistant steel was determined, and the critical damage value for crack initiation was further converted into the actual critical deformation amount during the hot forging process. A critical deormation amount model for the hot forging process of 12%Cr heat-resistant steel under the given deformation temperature and strain rate conditions was established, and the upsetting process was verified by 500 N hydraulic press, which provides the relevant theoretical references for the forging process of ultra-supercritical rotors.

基金项目:
基金项目:国家自然科学基金资助项目(51775361);山西省基础研究计划项目(202303021212230);太原科技大学博士启动金(20222055)
作者简介:
作者简介:徐 月(1993-),女,博士,讲师 E-mail:xuyue322520@163.com
参考文献:

 [1]  龙必查. 42CrMo曲轴锻件开裂的原因分析\[J].金属材料与冶金工程, 2022,50(2): 27-30,35.


 

Long B C. Causes analysis of 42CrMo crankshaft forging cracking\[J]. Metal Materials and Metallurgy Engineering, 2022,50(2): 27-30,35.

 

\[2]  冯超,王荣奇,高轲,等. 大型弯刀板锻件热锻成形仿真及工艺分析\[J]. 锻压技术, 2022, 47(6): 26-34.

 

Feng C, Wang R Q, Gao K, et al.Simulation and process analysis on hot forging for large machete plate forgings\[J]. Forging & Stamping Technology, 2022, 47(6): 26-34.

 

\[3]  李昌义, 王行, 王爱琴,等. 大型奥氏体不锈钢锻件的晶粒尺寸控制\[J]. 锻压技术, 2022,47(8): 22-28.

 

Li C Y, Wang H, Wang A Q,et al. Grain size control for large austenitic stainless steel forgings\[J]. Forging & Stamping Technology, 2022,47(8): 22-28.

 

\[4]  Duan X W,Liu J S.Research on damage evolution and damage model of 316LN steel during forging \[J]. Materials Science and Engineering: A, 2013, 588: 265-271.

 

\[5]  段兴旺,刘建生,郑晓华,等. 316LN钢裂纹萌生的临界损伤值\[J]. 塑性工程学报,2013,20(3): 60-64.

 

Duan X W,Liu J S,Zheng X H,et al. Critical damage value of 316LN steel crack initiation\[J]. Journal of Plasticity Engineering, 2013, 20(3): 60-64.

 

\[6]  梁晓宇. 12%Cr钢热锻裂纹的理论与实验研究\[D].太原:太原科技大学,2011.

 

Liang X Y.Research on Theoretical and Experimental for Hot Forging Cracks of 12%Cr Steel\[D].Taiyuan:Taiyuan University of Science and Technology, 2011.

 

\[7]  董岚枫,钟约先,马庆贤,等. 大型水轮机主轴锻造过程裂纹缺陷的预防\[J]. 清华大学学报:自然科学版,2008, 48(5): 765-768.

 

Dong L F, Zhong Y X, Ma Q X,et al. Prevention of forging cracks in heavy hydro-generator shafts\[J]. Journal of Tsinghua University:Science and Technology, 2008, 48(5): 765-768.

 

\[8]  马晓然, 曾龙, 胡侨丹,等. 铸态12%Cr马氏体不锈钢的热变形行为与热加工图\[J]. 热加工工艺,2014, 43(23):17-20.

 

Ma X R, Zeng L, Hu Q D,et al. Hot deformation behavior and processing map of as-cast 12%Cr martensitic stainless steel\[J]. Hot Working Technology, 2014, 43(23):17-20.

 

\[9]  赵畅. 超超临界高中压转子用Cr钢材料性能研究\[D]. 哈尔滨:哈尔滨工业大学, 2015.

 

Zhao C. Research on the Properties of Cr Steel Materials for Ultra Supercritical High and Medium Pressure Rotors\[D]. Harbin:Harbin Institute of Technology, 2015.

 

\[10]梅林波. 9%Cr钢汽轮机转子材料性能研究\[D]. 上海:上海交通大学, 2012.

 

Mei L B. Research on the Material Properties of 9%Cr Steel Turbine Rotors\[D]. Shanghai:Shanghai Jiaotong University, 2012.

 

\[11]Yoon J H, Yoon E P, Lee B S. Correlation of chemistry, microstructure and ductile fracture behaviours of niobium-stabilized austenitic stainless steel at elevated temperature\[J]. Scripta Materialia, 2007, 57(1):25-28. 

 

\[12]Viswanathan R, Bakker W T. Materials for ultra-supercritical coal power plants-boiler materials: Part 1\[J]. Journal of Materials Engineering and Performance, 2001, 10(1):81-95.

 

\[13]李景丹. CAP1400主管道热锻过程微观组织演变行为与工艺控制\[D]. 太原:太原科技大学, 2020.

 

Li J D. Microstructure Evolution Behavior and Process Control of CAP1400 Main Pipe during Hot Forging\[D]. Taiyuan:Taiyuan University of Science and Technology, 2020.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9