网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
辊径对Cu-Fe-P铜合金轧制带材表面微观缺陷及性能的影响
英文标题:Effect of roller diameter on surface microscopic defects and properties of Cu-Fe-P copper alloy rolled strip
作者:   郭宇会 杨小平 王满丰    景琳琪 马建阳 袁晓磊 
单位:(太原晋西春雷铜业有限公司 山西 太原 030008) 
关键词:Cu-Fe-P铜合金 轧辊辊径 应变速率 显微凹坑 电镀 
分类号:TG339
出版年,卷(期):页码:2024,49(9):122-128
摘要:

 为探究集成电路用框架材料金属带材表面微观缺陷的产生机理,建立了带材轧制过程中应变速率与轧辊辊径之间的关系,选取4种不同辊径的轧辊对Cu-Fe-P铜合金带材进行轧制,分析了轧后带材表面的显微凹坑缺陷的数量和状态,检测了轧制带材的抗拉强度、伸长率和显微硬度。此外,对轧制带材进行了电镀Ni实验,并利用能谱分析检测了电镀前后的表面缺陷变化。结果显示:随着辊径的增大,轧制带材的应变速率降低,带材表面显微凹坑缺陷明显减少且抗拉强度降低,但是抗拉强度波动值有所增加。经过表面电镀后,表面显微凹坑缺陷存在未被镀层覆盖的现象。采用Φ210 mm轧辊轧制的带材表面的显微凹坑缺陷最少,可为Cu-Fe-P铜合金带材的轧制工艺优化和表面质量改善提供参考。

 

 To explore the generation mechanism of microscopic defects on the surface of metal strip used as the frame material for integrated circuit, the relationship between strain rate and roller diameter during the strip rolling process was established, and four types of rollers with different diameters were selected 

to roll the Cu-Fe-P copper alloy strips. Then, the number and state of micro pits on the surface of rolled strip were analyzed, and the tensile strength, elongation and microhardness were detected. In addition, electroplating Ni experiments were conducted on the rolled strips, and the surface defect changes before and after electroplating were detected by energy dispersive spectroscopy. The results show that with the increasing of roller diameter, the strain rate of rolled strip decreases, the micro pits on the surface of strip significantly decreases, and the tensile strength decreases, but the fluctuation value of tensile strength increases. After surface electroplating, the micro pits on the surface of strip are not covered by the coating. Thus, the micro pits on the surface of rolled strip by the roller with Φ210 mm are minimized, which can provide reference for the optimization of rolling process and the improvement of the surface quality of Cu-Fe-P copper alloy strip.
 
基金项目:
作者简介:
作者简介:张 斌(1981-),男,硕士,高级工程师 E-mail:jxclzb@163.com
参考文献:

 \[1]  刘凯,齐亮,谢春晓,等. IC引线框架材料概述\[J]. 热处理,2005,21(2):21-24. 


 

Liu K, Qi L, Xie C X, et al. Summarization on the materials for IC lead frame\[J]. Heat Treatment, 2005, 21(2): 21-24. 

 

\[2]  刘喜波,董企铭,刘平,等. 引线框架材料Cu-Fe-P合金试制产品分析\[J]. 铸造,2004,53(9):736-738. 

 

Liu X B, Dong Q M, Liu P, et al. Analysis on Cu-Fe-P alloy trial production for lead frame materials\[J]. Foundry, 2004, 53(9): 736-738. 

 

\[3]  师阿维. 引线框架用铜合金的研究与发展\[J]. 热处理,2006,22(2):6-10. 

 

Shi A W.Research and development of copper alloys for lead frame\[J]. Heat Treatment, 2006, 22(2):6-10. 

 

\[4]  Peter Van Zant.芯片制造-半导体工艺制程实用教程 \[M]. 韩郑生,赵树武,译. 北京:电子工业出版社,2010. 

 

Peter Van Zant. Microchip Fabrication: A Practical Guide to Semiconductor Processing \[M]. Translated by Han Z S, Zhao S W. Beijing: Publishing House of Electronics Industry, 2010. 

 

\[5]  高铭余,谢宏斌,方攸同,等. 铜及铜合金表面处理技术进展\[J]. 中国有色金属学报,2021,31(5):1121-1133. 

 

Gao M Y, Xie H B, Fang Y T, et al. Progress in surface treatment techniques of copper and copper alloys\[J]. The Chinese Journal of Nonferrous Metals,  2021, 31(5): 1121-1133. 

 

\[6]  李维创,尹柏强. 工业金属板带材表面缺陷自动视觉检测研究进展 \[J]. 电子测量与仪器学报,2021,35(6):1-16. 

 

Li W C, Yin B Q. Research progress of automated visual surface defect detection for industrial metal planar materials\[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(6): 1-16. 

 

\[7]  涂思京,闫晓东,谢水生. 引线框架用铜合金C194的组织性能研究 \[J]. 稀有金属,2003,28(1):199-201. 

 

Tu S J, Yan X D, Xie S S. Structure and performance of C194 copper alloy used for lead frame \[J]. Rare Metals, 2003, 28(1): 199-201. 

 

\[8]  吕官丽. 引线框架用C19400合金微结构特征和抗软化性能\[D]. 洛阳:河南科技大学,2022. 

 

Lyu G L. Microstructural Characteristics and Softening Resistance of C19400 Alloy for Lead Frames \[D]. Luoyang: Henan University of Science and Technology, 2022. 

 

\[9]  Xu J, Guan B, Fu R, et al. Tailoring the microstructure and mechanical properties of CuFe alloy by varying the rolling path and rolling temperature\[J].Journal of Materials Research and Technology, 2023, 27: 182-193. 

 

\[10]张佳康,周晓敏,蒋靖. 冷轧带钢表面微观形貌轧制转印规律分析\[J]. 金属世界,2018(3):34-39. 

 

Zhang J K,Zhou X M,Jiang J. Analysis of rolling transfer law of surface micromorphology of cold-rolled strip steel\[J]. Metal World,2018(3):34-39. 

 

\[11]Yang J Z, Bu K, Zhou Y J, et al. Influence of short-time annealing on the evolution of the microstructure, mechanical properties and residual stress of the C19400 alloy strips\[J]. Journal of Alloys and Compounds, 2023, 941:168705. 

 

\[12]张丹丹. C19400铜合金板带冷轧变形规律与性能研究\[D]. 洛阳:河南科技大学,2020. 

 

Zhang D D. Study on Cold Rolling Deformation and Properties of C19400 Copper Alloy Strip\[D]. Luoyang:Henan University of Science and Technology, 2020. 

 

\[13]Aman G, Lalit K, Tae-Hyeon Y, et al.  Unveiling the self-annealing phenomenon and texture evolution in room-temperature-rolled Cu-Fe-P alloy sheets\[J]. International Journal of Plasticity, 2022, 159:103473. 

 

\[14]李六军,李习周,郭昌宏. 引线框架表面缺陷与解决方法浅析\[J]. 中国集成电路,2021,30(8):74-79. 

 

Li L J, Li X Z, Guo C H. Abnormalities of lead frame surface and solutions\[J]. China lntegrated Circult, 2021, 30(8): 74-79. 

 

\[15]Reiner K,Herbert W. 金属塑性成形导论 \[M]. 康永林,洪慧平,译.北京:高等教育出版社,2009. 

 

Reiner K, Herbert W. Einführung in Die Umformtechnik \[M]. Translated by Kang Y L, Hong H P. Beiiing:Higher Education Press, 2009. 

 

\[16]孙建林. 轧制工艺润滑原理、技术与应用 \[M]. 北京:冶金工业出版社,2010. 

 

Sun J L. Principle Technology and Application of Lubrication in Rolling Process \[M]. Beijing: Metallurgical Industry Press, 2010. 

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9