\[1] Sun W, Zhu Y, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity \[J]. Science, 2019, 363(6430): 972-975.
\[2] Wang S B, Ran Q, Yao R Q, et al. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries \[J]. Nature Communications, 2020, 11(1):1634.
\[3] Sokluk M, Cao C, Pan S, et al. Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075 \[J]. Nat Commun, 2019, 10(1): 98.
\[4] Cai Y H, Liang R G, Su Z P, et al. Microstructure of spray formed Al-Zn-Mg-Cu alloy with Mn addition \[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1): 9-14.
\[5] Yang M J, Chen H N, et al. Quantified contribution of β″ and β′ precipitates to the strengthening of an aged Al-Mg-Si alloy \[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2020, 774:138776.
\[6] Chen S, Zhan X H, Zhao Y Q, et al. Influence of laser power on grain size and tensile strength of 5A90 Al-Li alloy T-joint fabricated by dual laser-beam bilateral synchronous welding \[J]. Metals and Materials International, 2021, 27(6): 1671-85.
\[7] Verbernr B A, Plumper O, Matthijs de winter D A, et al. Superplastic nanofibrous slip zones control seismogenic fault friction \[J]. Science, 2014, 346(6215): 1342.
\[8] Zhang L, Zhang J H, Xu C, et al. Investigation of high-strength and superplastic Mg-Y-Gd-Zn alloy \[J]. Materials & Design, 2014, 61: 168-176.
\[9] 付明杰, 曾元松, 韩秀全, 等. Ti-4.5Al-3V-2Fe-2Mo合金板材超塑成形组织及性能研究 \[J].航空制造技术,2021,64(Z1):76-81.
Fu M J, Zeng Y S, Han X Q, et al. Microstructure and mechanical property of superplastic deformed Ti-4.5Al-3V-2Fe-2Mo alloy sheet\[J]. Aeronautical Manufacturing Technology, 2021, 64(Z1): 76-81.
\[10]Lakshmanan P, Sakthivel E. Examining the superplastic behavior of (Al-Si-Mg)/SiC metal matrix nanocomposites \[J]. Materials Today-Proceedings, 2022, 62: 962-966.
\[11]Li L T, Lin Y C, Zhou H M, et al. Modeling the high-temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model \[J]. Computational Materials Science, 2013, 73: 72-78.
\[12]Das P, Jayaganthan R, Singh I V. Tensile and impact-toughness behaviour of cryorolled Al 7075 alloy \[J]. Materials & Design, 2011, 32(3): 1298-1305.
\[13]Zhang P, Ye L Y, Zhang X M, et al. Grain structure and microtexture evolution during superplastic deformation of 5A90 Al-Li alloy \[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2088-2093.
\[14]Wang G W, Ye L Y, Sun D X, et al. Superplastic deformation behavior of 5A90 aluminum-lithium alloy \[J]. Journal of Central South University(Science and Technology), 2017,48(5):21-28.
\[15]程东海, 陈龙, 陈益平, 等. 5A90铝锂合金电子束焊接头超塑性变形组织演变\[J]. 焊接学报, 2017, 38(6): 29-32,36,120.
Cheng D H, Chen L, Chen Y P, et al. Evolution of superplastic deformation microstructure in electron beam welded joints of 5A90 aluminum lithium alloy\[J].Transactions of the China Welding Institution, 2017, 38(6): 29-32,36,120.
\[16]牛凤姣,马子博,郭亚杰,等.固溶温度对薄板细晶2A97铝锂合金强化机制的影响研究\[J].湖南大学学报(自然科学版),2023,50(6):144-155.
Niu F J, Ma Z B, Guo Y J, et al. Study on influence of solution temperature on strengthening mechanism of thin-plated fine-grained 2A97 Al-Li alloy \[J]. Journal of Hunan University(Natural Sciences),2023,50(6):144-155.
\[17]Xiao J, Cao J G, Song C N, et al. The collapse deformation prediction model of wide 7075 aluminum alloy intermediate slab based on PSO-SVR during hot rolling process\[J]. Journal of Materials Engineering and Performance,2023,33:1034-1050.
\[18]张义俊,冯亚磊,郭晓光,等.2195铝锂合金的热变形行为及本构方程研究\[J].锻压技术,2023,48(9):239-247.
Zhang Y J, Feng Y L, Guo X G, et al. Study on thermal deformation behavior and constitutive equation of 2195 Al-Li alloy \[J]. Forging & Stamping Technology,2023,48(9):239-247.
\[19]楼国彪,杨未,陈武龙,等.S32001双相型不锈钢高温力学性能试验\[J].同济大学学报(自然科学版),2022,50(6):831-840.
Lou G B, Yang W, Cen W L, et al. Experimental investigation on mechanical properties of S32001 duplex \[J].Journal of Tongji University(Natural Science), 2022,50(6):831-840.
\[20]吴道祥,梁强,王敬.2024A铝合金高温流变行为及本构关系研究\[J].特种铸造及有色合金,2020,40(3):233-238.
Wu D X, Liang Q, Wang J, et al. Hot deformation behavior and constitutive equation of 2024A aluminum alloy\[J]. Special Casting & Nonferrous Alloys,2020,40(3):233-238.
\[21]曹建国,王天聪,李洪波,等.基于Arrhenius改进模型的无取向电工钢高温变形本构关系\[J].机械工程学报,2016,52(4):90-96,102.
Cao J G, Wang T C, Li H B, et al. High-temperature constitutive relationship of non-oriented electrical steel based on modified arrhenius model \[J]. Journal of Mechanical Engineering,2016,52(4):90-96,102.
|