\[1] 施瀚超,张学军,陈云峰,等. 贝氏体等温温度对含铝TRIP钢组织和性能的影响\[J]. 热加工工艺,2013,42(16): 69-72.
Shi H C, Zhang X J, Chen Y F, et al. Effect of bainite isothermal temperature on microstructure and properties of TRIP steel with Al \[J]. Hot Working Technology, 2013,42(16): 69-72.
\[2] 褚关润,方刚,路洪洲,等. 生命周期评价在钢材及汽车用钢中的研究现状与发展趋势\[J].钢铁研究学报, 2023, 35(10):1196-1206.
Chu G R, Fang G, Lu H Z, et al. Research status and development direction of life cycle assessment in steel products and automotive steel\[J]. Journal of Iron and Steel Research,2023,35(10):1196-1206.
\[3] 赵征志,陈伟健,高鹏飞,等.先进高强度汽车用钢研究进展及展望\[J].钢铁研究学报,2020,32(12):1059-1076.
Zhao Z Z, Chen W J, Gao P F, et al. Progress and prospective of advanced high strength automotive steel \[J]. Journal of Iron and Steel Research,2020,32(12):1059-1076.
\[4] 王存宇,杨洁,常颖,等.先进高强度汽车钢的发展趋势与挑战\[J].钢铁,2019,54(2):1-6.
Wang C Y, Yang J, Chang Y, et al. Development trend and challenge of advanced high strength automobile steels\[J]. Iron and Steel, 2019, 54(2): 1-6.
\[5] 谢磊磊,唐荻,江海涛,等.汽车用先进高强钢的成形性能\[J].塑性工程学报,2013,20(1):84-88.
Xie L L, Tang D, Jiang H T, et al. Study on formability of advanced high strength steel for automobiles \[J].Journal of Plasticity Engineering, 2013,20(1):84-88.
\[6] 刘强,江海涛,唐荻,等.TRIP钢中残余奥氏体的分布及相变行为\[J].物理测试,2008(4):21-25,45.
Liu Q, Jiang H T, Tang D, et al. Distribution and transformation behavior of retained austenite in TRIP steel \[J]. Physics Examination and Testing,2008(4):21-25,45.
\[7] 史文,李麟,周媛,等. Mn含量对0.15C-0.6Si-Mn TRIP钢组织和力学性能的影响\[J]. 金属热处理,2002,2(8): 9-12.
Shi W, Li L, Zhou Y, et al. Effect of Mn content on microstructures and mechanical properties of cold rolled 0.15C-0.6Si-Mn TRIP steels\[J]. Heat Treatment of Metals,2002,2(8): 9-12.
\[8] 洪济舟,宋双喜,王俊峰,等. Nb-Mo微合金化对δ-TRIP钢组织和力学性能的影响\[J]. 金属热处理,2019,44(5): 1-6.
Hong J Z, Song S X, Wang J F, et al. Effect of Nb-Mo microalloying on microstructure and mechanical properties of δ-TRIP steel\[J]. Heat Treatment of Metals,2019,44(5): 1-6.
\[9] Shiri S G, Jahromi S A J, Palizdar Y, et al. Unexpected effect of Nb addition as a microalloying element on mechanical properties of δ-TRIP steels \[J]. Journal of Iron and Steel Research International, 2016, 23(9): 988-996.
\[10]易红亮,陈蓬,王国栋,等. δ-TRIP钢的物理与力学冶金\[J].中国工程科学,2014, 16(2): 18-30.
Yi H L, Chen P, Wang G D, et al. δ-TRIP steel:Physical and mechanical metallurgy\[J]. Strategic Study of CAE,2014,16(2): 18-30.
\[11]GB/T 3075—2021,金属材料 疲劳试验 轴向力控制方法 \[S].
GB/T 3075—2021,Metallic materials—Fatigue testing—Axial force controlled method \[S].
\[12]GB/T 228.1—2010,金属材料 拉伸试验 第1部分:室温试验方法 \[S].
GB/T 228.1—2010,Metallic materials—Tensile testing—Part 1: Method of test at room temperature\[S].
\[13]Zhao Y X, Yang B, Zhang W H. Reconstruction of the material probabilistic SN relations under fatigue life following lognormal distribution I-without given confidence \[J]. Key Engineering Materials, 2006, 324-325(2): 1043-1046.
\[14]Pascual F G. Optimal test planning for the fatigue-limit model when the fatigue-limit distribution is known \[J]. IEEE Transactions on Reliability, 2004, 53(2): 284-292.
\[15]Gope P C. Determination of sample size for estimation of fatigue life by using Weibull or log-normal distribution \[J]. International Journal of Fatigue, 1999, 21(8): 745-752.
\[16]孟迪. P-S-N曲线拟合方法与斜拉索概率寿命预测\[D].沈阳:东北大学, 2011.
Meng D. The Fitting Methods of P-S-N Curves and Prediction on Probabilistic Life for Stay Cable\[D]. Shenyang:Northeastern University,2011.
\[18]Wang G Y, Ma M T, Jin Q S, et al. A high-frequency fatigue accelerated measuring method for P-S-N curve and fatigue limit-science direct \[A]. The University of Sydney, Recent Advances in Structural Integrity Analysis\[C]. Sydney: Chinese Mechanical Engineering Society, 2014.
\[19]孙茂才. 金属力学性能\[M]. 哈尔滨: 哈尔滨工业大学出版社,2010.
Sun M C. Metal Mechanical Properties\[M].Harbin:Harbin Institute of Technology Press,2010.
\[20]Akiniwa Y, Tanaka K, Kinefuchi M. Effect of microstructure on propagation and non-propagation of short fatigue cracks at notches \[J]. Journal of the Society of Materials Science Japan, 1989, 38(434): 1275-1281.
\[21]Lin Y C, Deng J, Jiang Y Q, et al. Hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy \[J]. Materials & design, 2014, 55(3): 949-957.
\[22]Smith E. The stability of a penny-shaped crack in a solid subject to an applied tensile stress \[J]. International Journal of Fracture, 1984, 24(4): 279-287.
\[23]Mcauliffe C, Waisman H. A unified model for metal failure capturing shear banding and fracture \[J]. International Journal of Plasticity, 2015, 65: 131-151.
\[24]班丽丽,惠卫军,雍岐龙,等. 残余奥氏体对中碳TRIP钢疲劳性能的影响\[J]. 材料研究学报, 2007,21: 196-200.
Ban L L, Hui W J, Yong Q L, et al. Effect of retained austenite on the fatigue properties of medium carbon TRIP steels \[J]. Chinese Journal of Materials Research, 2007,21: 196-200.
|