网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
宏细观参数对泡沫金属单轴动态拉伸性能的影响
英文标题:Effect of macro and micro parameters on uniaxial dynamic tensile properties of foam metal
作者:谭仕锋1   情2 
单位:(1.中建八局浙江建设有限公司 浙江 杭州 311231  2. 上海夺汇网络技术有限公司 上海 200082) 
关键词:泡沫金属 动态拉伸 应变率 相对密度 形状不规则度 3D Voronoi模型 细观变形 
分类号:3401
出版年,卷(期):页码:2024,49(9):220-229
摘要:

 泡沫金属在实际工程应用中往往承受动态荷载,而这种多胞材料的结构优化设计需要基于动静态加载条件下的力学性能。针对泡沫金属的动态性能不能简单地由静态加载性能进行表征的问题,基于3D Voronoi建立的“狗骨头”形试件模型对泡沫金属单轴动态拉伸进行数值仿真实验,定量研究加载应变率、相对密度和形状不规则度参数对泡沫金属动态性能的影响,观察细观变形特征,阐明其破坏机理,并通过量化高速拉伸加载下的惯性效应消除惯性应力的影响,研究泡沫金属单轴动态拉伸破坏性能。结果表明:相对密度参数与形状不规则度参数均对泡沫金属动态拉伸的破坏应力、破坏应变影响显著;泡沫金属在不同应变率加载下的破坏模式也不同,但对模型应力-应变曲线的影响不大。

 

 Foam metal is often subjected to dynamic loads in practical engineering applications, which is multicellular material structure, and its optimal structure design needs to be based on its mechanical properties under dynamic and static loading conditions. Therefore, aiming at the problem that the dynamic properties of foam metal could not be simply characterized by the static loading properties, the numerical simulation experiments were carried out on the uniaxial dynamic tensile of foam metal based on the dog bone-shaped specimen model established by 3D Voronoi. Then, the influences of loading strain rate, relative density and shape irregularity parameters on the dynamic properties of foam metal were quantitatively studied, and the microscopic deformation characteristics were observed. The failure mechanism was expounded, and the influence of inertia stress was eliminated by quantifying the inertia effect under high speed tensile loading to study the uniaxial dynamic tensile failure performance of foam metal. The results show that both the relative density parameters and shape irregularity parameters have significant effects on the failure stress and failure strain of foam metal in dynamic tensile. The failure modes of foam metal under different strain rates are also different, but have little effect on the stress-strain curves of the model.

 
基金项目:
作者简介:
作者简介:谭仕锋(1997-),男,硕士,助理工程师 E-mail:1911417044@qq.com
参考文献:

 \[1]  Gibson L J.Mechanical behavior of metallic foams\[J]. Annual Review of Materials Science, 2000, 30(1): 191-227.


 

\[2]  Davies G J,Shu Z.Metallic foams: Their production, properties and applications\[J]. Journal of Materials Science, 1983, 18(7):1899-1911.

 

\[3]  Ubertalli G, Ferraris S. Al-based metal foams (AMF) as permanent cores in casting: State-of-the-art and future perspectives\[J]. Metals, 2020, 10(12):1592.

 

\[4]  刘培生. 泡沫金属力学性能的若干问题\[J]. 稀有金属材料与工程, 2004, 33(5):473-477.

 

Liu P S. Some problems on mechanical properties of foamed metals\[J]. Rare Metal Materials and Engineering, 2024, 33(5):473-477.

 

\[5]  梁恒, 刘益才, 汪谦旭,等. 开孔泡沫金属复合材料有效热导率的研究进展\[J]. 化工学报, 2021, 72(A1):7-20.

 

Liang H, Liu Y C, Wang Q X, et al. Research progress of effective thermal conductivity of open-cell foam metal composites\[J]. CIESC Journal, 2021, 72(A1):7-20.

 

\[6]  Sun D, Li J, Xu R, et al. Effects of the foam metal casing treatment on aerodynamic stability and aerocoustic noise in an axial flow compressor\[J]. Aerospace Science and Technology, 2021, 115: 106793.

 

\[7]  吕学奎, 郝俊锋. 泡沫铝在汽车结构件上的应用\[J]. 内燃机与配件, 2021(21):33-34.

 

Lyu X K, Hao J F. Application in automobile structural parts of foamed aluminum\[J]. Internal Combustion Engine & Parts, 2021(21):33-34.

 

\[8]  赵得锁, 何晓聪, 雷蕾. 异种泡沫金属夹层板压印接头静力学性能对比分析\[J]. 塑性工程学报, 2018, 25(2):217-222.

 

Zhao D S, He X C, Lei L. Comparison and analysis on the static mechanical properties of clinched joints of dissimilar foamed metal sandwich plate\[J]. Journal of Plasticity Engineering, 2018, 25(2):217-222.

 

\[9]  刘国勇, 陈泽民, 朱世安,等. 多孔薄壁铝型材挤压模具结构\[J]. 锻压技术, 2023, 48(6):162-170.

 

Liu G Y, Chen Z M, Zhu S A, et al. Structure of extrusion mold for porous thin-walled aluminum profiles\[J]. Forging & Stamping Technology,2023, 48(6):162-170.

 

\[10]蔡玮雯, 马其华, 甘学辉. 低速冲击载荷下CFRP-Al多胞薄壁管的耐撞性\[J]. 塑性工程学报, 2023, 30(4):187-196. 

 

Cai W W, Ma Q H, Gan X H. Crashworthiness of CFRP-Al multi-cell thin-walled tube under low speed impact load\[J]. Journal of Plasticity Engineering, 2023, 30(4):187-196. 

 

\[11]刘胜, 郑刚, 伍素珍, 等. 梯度五胞薄壁管高速冲击吸能特性仿真研究\[J]. 锻压技术, 2015, 40(11):94-99.

 

Liu S, Zheng G, Wu S Z, et al. Research on simulation of high speed impact absorbing energy characteristics in five-cell thin-wall structure with thickness gradient\[J]. Forging & Stamping Technology,2015, 40(11):94-99.

 

\[12]王晶, 齐明思, 张伟, 等. 相对密度对球体开孔泡沫铝压缩及吸能性能的影响\[J]. 包装工程, 2019, 40(21):105-110.

 

Wang J, Qi M S, Zhang W, et al. Influence of relative density on compression properties and energy absorption of spherical open cell aluminum foam\[J]. Packaging Engineering, 2019, 40(21):105-110.

 

\[13]田天, 陈太林, 赵伟. 相对密度对泡沫铝动态压缩力学性能的影响\[J]. 广东建材, 2008 (9):42-43.

 

Tian T, Chen T L, Zhao W. Effect of relative density on dynamic compressive mechanical properties of aluminum foams\[J]. Guangdong Building Materials, 2008 (9):42-43.

 

\[14]李志斌, 李雪艳. 泡沫金属尺寸效应和约束条件下的压缩性能\[J]. 稀有金属材料与工程, 2020, 49(9):3203-3208.

 

 

Li Z B, Li X Y. Size effects and compression properties of metallic foams with lateral constraint\[J]. Rare Metal Materials and Engineering, 2020, 49(9):3203-3208.

 

\[15]Soni B, Biswas S. Evaluation of mechanical properties under quasi-static compression of open-cell foams of 6061-T6 Al alloy fabricated by pressurized salt infiltration casting method\[J]. Materials Characterization, 2017, 130:198-203.

 

 

\[16]韩春光, 汤立群, 黄小清. 材料非均匀性对泡沫金属拉伸性能的影响\[J]. 实验力学, 2011, 26(3):234-239.

 

Han C G,Tang L Q,Huang X Q.Effects of material heterogeneity on the tensile properties of metal foams\[J].Journal of Experimental Mechanics, 2011, 26(3):234-239.

 

\[17]康颖安, 张俊彦, 谭加才. 相对密度对泡沫铝力学性能和能量吸收性能的影响\[J]. 功能材料, 2006, 37(2):247-249.      

 

Kang Y A,Zhang J Y,Tan J C.Effect of relative density on the compressive property and energy absorption capacity of aluminum foams\[J].Journal of Functional Materials, 2006, 37(2):247-249.

 

\[18]Gibson L J. Cellular solids\[J]. Mrs Bulletin, 2003, 28(4):270-274.

 

\[19]Tang L Q, Shi X P, Zhang L, et al. Effects of statistics of cell′s size and shape irregularity on mechanical properties of 2D and 3D Voronoi foams\[J]. Acta Mechanica, 2014, 225:1361-1372.

 

\[20]Borovinek M, Ren Z. Computational modelling of irregular open-cell foam behaviour under impact loading\[J]. Materials Science & Engineering Technology, 2008, 39(2): 114-120.

 

\[21]Wu Y D, Qiao D, Tang L Q, et al. Global topology of yield surfaces of metallic foams in principal-stress space and principal-strain space studied by experiments and numerical simulations\[J]. International Journal of Mechanical Sciences, 2017, 134:562-575.

 

\[22]Zhang X Y, Tang L Q, Jiang Z Y, et al. Effects of meso shape irregularity of metal foam on yield features under triaxial loading\[J]. International Journal of Structural Stability and Dynamics, 2015, 15(7):1540014.

 

\[23]习会峰, 姚一鸣, 刘逸平,等. 泡沫金属中高速拉伸的试验数据处理与材料力学性能测量\[J]. 实验力学, 2020, 35(6):978-984.

 

Xi H F, Yao Y M, Liu Y P, et al. Data processing and mechanical properties measurement of foamed metal in medium to high-speed tensile test\[J]. Journal of Experimental Mechanics, 2020, 35(6):978-984.

 

\[24]张晓阳. 多轴条件下基于细观结构模型的泡沫金属屈服与破坏行为研究\[D].广州:华南理工大学,2016.

 

Zhang X Y. Study on the Yield and Failure Behaviors of Metal Foam under Multi-axial Loading based on Meso-structure Models\[D]. Guangzhou:South China University of Technology, 2016.      

 

\[25]张晓阳, 谭仕锋, 刘泽宇, 等.中高应变率下泡沫金属动态拉伸有限元模型研究\[J]. 南华大学学报(自然科学版), 2022, 36(6):45-50.

 

Zhang X Y,Tan S F, Liu Z Y, et al. Study on finite element model of metallic foams under dynamic tension\[J]. Journal of University of South China(Science and Technology), 2022, 36(6):45-50.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9