网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于克里金模型和数值仿真的汽车转向节成形工艺优化
英文标题:Optimization on forming process of automobile steering knuckle based on Kriging model and numerical simulation
作者:黄进 
单位:重庆工业职业技术学院 电子与物联网工程学院 
关键词:转向节 热锻成形 克里金模型 遗传算法 阻力墙结构 40Cr钢 
分类号:TG316
出版年,卷(期):页码:2024,49(11):8-15
摘要:

 针对某汽车转向节热锻成形过程中存在的欠填充和成形载荷过大等问题,采用Forge有限元软件进行仿真优化。首先,基于热压缩实验,建立了40Cr钢的Hensel-Spittel本构模型;其次,选取阻力墙结构参数作为优化设计变量,开展了正交实验设计和数值仿真;最后,构建了响应面模型,并利用多目标遗传算法进行了优化。研究表明,40Cr钢在1123 K以上发生再结晶软化,且温度升高和应变速率降低时,软化现象愈加明显。当温度超过1123 K且应变速率低于1 s-1时,出现显著应力峰值;Hensel-Spittel模型能够高精度预测材料的高温流变特性,其参数易于求解;合理设计的阻力墙结构能够有效改变坯料流动规律,确保填充性能。实际生产试制结果验证了从最优前沿解集中选取的最优解可获得合格锻件。

 For the problems of insufficient filling and excessive forming load in the hot forging process of a certain automotive steering knuckle, the simulation optimization was conducted by using finite element software Forge. First, a Hensel-Spittel constitutive model for 40Cr steel was established based on hot compression experiments. Next, the structure parameters of resistance wall were selected as the optimization design variables, and the orthogonal experimental design and numerical simulations were carried out. Finally, a response surface model was constructed, and the optimization was performed by using a multi-objective genetic algorithm. The research shows that 40Cr steel undergoes recrystallization softening above 1123 K, and the softening phenomenon becomes more pronounced as the temperature increases and the strain rate decreases. When the temperature exceeds 1123 K and the strain rate is below 1 s-1, a significant stress peak occurs. The Hensel-Spittel model can accurately predict the high-temperature rheological characteristics of the material, and the parameters are easy to solve. A well-designed resistance wall structure can effectively change the flow laws of blank and ensures the filling performance. The actual production trial results have verified that the optimal solution selected from the optimal frontier solution set can obtain qualified forgings.

基金项目:
重庆市职业教育教学改革研究项目(Z233028);重庆工业职业技术学院教育科学规划项目(2023GZYJYGHY-02)
作者简介:
作者简介:黄进(1981-),男,博士研究生,副教授 E-mail:huangjin@cqipc.edu.cn
参考文献:

 [1]宛加雄, 武建祥, 晏洋, . 汽车转向节臂端部冷精整工艺优化[J]. 精密成形工程, 2022, 14(9):66-72.


Wan J X, Wu J X, Yan Y, et al. Optimization of cold finishing process for the end of automobile knuckle arm[J]. Journal of Netshape Forming Engineering, 2022, 14(9):66-72.


[2]齐羿,薛喜云,焦斐,.盘式转向节锻造工艺优化与过程模拟分析[J].锻压技术,2023,48(9):32-40.


Qi Y, Xue X Y, Jiao F, et al. Forging process optimization and process simulation analysis on disc steering knuckle[J]. Forging & Stamping Technology, 2023,48(9):32-40.[3]胡祚庥, 刘淑梅, 毛欣然. 基于正交实验与响应面法汽车转向节模具结构优化[J]. 锻压技术, 2022, 47(8):178-184.


Hu Z X, Liu S M, Mao X R. Structural optimization on automobile steering knuckle mold based on orthogonal test and response surface method[J]. Forging & Stamping Technology, 2022, 47(8):178-184.


[4]陆建明, 刘杰, 潘晓涛. 基于Deform的铝合金汽车转向节锻造成形分析[J]. 热加工工艺, 2023, 52(5):111-113.


Lu J M, Liu J, Pan X T. Analysis of forging forming of aluminum alloy automotive steering knuckle based on Deform[J]. Hot Working Technology, 2023, 52(5):111-113.


[5]邱劲, 扶教龙. 基于神经网络的转向节热锻成形工艺优化[J]. 热加工工艺, 2022, 51(9):106-109.


Qiu J, Fu J L. Hot forging forming process optimization of automobile steering knuckle based on neural network[J]. Hot Working Technology, 2022, 51(9):106-109.


[6]曹洪, 薛世博, 薛传妹, . 基于圆弧形镦粗模合理体积分配的转向节成形工艺[J]. 锻压技术, 2022, 47(9):7-11.


Cao H, Xu S B, Xue C M, et al. Forming technology of steering knuckle based on reasonable volume distribution for circular arc upsetting die[J]. Forging & Stamping Technology, 2022, 47(9):7-11.


[7]徐杰. 基于克里金模型和多目标遗传算法的转向节模具参数优化[J]. 锻压技术, 2022, 47(7):213-219.


Xu J. Optimization on steering knuckle mold parameters based on Kriging model and multi-objective genetic algorithm[J]. Forging & Stamping Technology, 2022, 47(7):213-219.


[8]代璐蔚. 非调质钢38MnVTi转向节热锻成形数值模拟及工艺优化[D]. 重庆:重庆理工大学, 2019.


Dai L W. Numerical Simulation and Process Optimization of Hot Forging Process for Steering Knuckle of 38MnVTi Non-quenched and Tempered Steel[D]. ChongqingChongqing University of Thechnology, 2019.


[9]Mehtedi M E, Spigarelli S, Gabrielli F, et al. Comparison study of constitutive models in predicting the hot deformation behavior of AA6060 and AA6063 aluminium alloys[J]. Materials Today Proceedings, 2015, 2(10): 4732-4739.


[10]Mehtedi M E, Musharavati F, Spigarelli S. Modelling of the flow behaviour of wrought aluminium alloys at elevated temperatures by a new constitutive equation[J]. Material Design,2014, 54: 869-873.


[11]杨海, 周杰, 黄亮, . 基于数值模拟的转向节挤压工艺优化[J]. 热加工工艺, 2013, 42(1):72-74.


Yang H, Zhou J, Huang L, et al. Extrusion process optimization for steering knuckle based on numerical simulation[J]. Hot Working Technology, 2013, 42(1):72-74.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9