网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
固溶态304奥氏体不锈钢的氢脆行为
英文标题:Hydrogen embrittlement behavior on solid solution 304 austenitic stainless steel
作者:张慧云1 孙晓思1 孙颖1 郑留伟2 
单位:1. 山西工程职业学院 冶金工程系 2. 太原理工大学 材料科学与工程学院 
关键词:奥氏体不锈钢 氢脆 α′-马氏体 晶界 孪晶界 
分类号:TG142.71
出版年,卷(期):页码:2024,49(11):189-201
摘要:

 对具有均质奥氏体组织的固溶态304 奥氏体不锈钢(ASS)的静态及动态微观组织演变与氢之间的交互关系进行了研究。固溶态ASS的氢脆敏感性较低,抗氢脆性能较好,但强度低,适用于对抗氢脆性能要求比较高但对强度要求不高的情况。通过原位拉伸实验揭示了拉伸变形促进α′-马氏体转变,而氢作为缺陷降低了层错能,进一步促进了α′-马氏体的转变,α′-马氏体在孪晶界和滑移带的位置形核。固溶态ASS充氢拉断后,边部脆性断口为河流状解理断裂和撕裂棱准解理断裂,氢一方面促进了马氏体相变,另一方面增强了材料孪晶界处的应力集中和应变局部化,拉伸过程中微裂纹沿α′-马氏体的形核位置即孪晶界萌生和扩展,同时促进裂纹尖端的位错运动,导致材料断裂。

 The interaction between the static and dynamic microstructure evolution of solid solution 304 austenitic stainless steel (ASS) with homogeneous austenitic structure and hydrogen was studied. The results show that solid solution ASS has low sensitivity to hydrogen embrittlement and good resistance to hydrogen embrittlement, but low strength, making it suitable for situations where high resistance to hydrogen embrittlement is required, but low strength is not. Then, through in-situ tensile experiments, it is revealed that tensile deformation promoted α′-martensite transformation, while hydrogen is used as a defect to reduce the layer fault energy, further promoting α′-martensite transformation, which nucleates at the twin boundary and slip bands. After the hydrogen charging and tensile fracture of solid solution ASS, the brittle fracture at the edge is river shaped cleavage fracture and tearing edge quasi-cleavage fracture. On the one hand, hydrogen promotes the martensitic transformation, and enhances the stress concentration and the strain localization at the twin boundary of the material on the other hand. During the tensile process, micro-cracks initiates and propagate along the nucleation position of α′-martensite, that is, the twin boundary, while promoting the dislocation movement at the crack tip, leading to the material fracture.

基金项目:
山西省高等学校科技创新项目(2024L592);山西工程职业学院2024年度揭榜挂帅课题(KY2024-1);山西省科技计划青年科学研究项目(202303021212306);2023 年山西省职业教育教学改革与实践研究项目(202301005);山西工程职业学院校企合作课题(XQ2022-01)
作者简介:
作者简介:张慧云(1987-),女,博士,副教授 E-mail:245883278@qq.com
参考文献:

[1]Chen X Y, Zhou C S, Zheng J Y, et al. Effects of α′ martensite and deformation twin on hydrogen-assisted fatigue crack growth in cold/warm-rolled type 304 stainless steel [J]. International Journal of Hydrogen Energy, 2018, 43(6): 3342-3352.


[2]Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels [J]. Materials Science and Engineering:R, 2009, 65(4-6): 39-104.

[3]范宇恒.不锈钢微观组织结构对其氢脆性能的影响 [D]. 沈阳: 中国科学技术大学, 2019.

Fan Y H. Effect of Microstructures on the Hydrogen Embrittlement of Stainless Steels [D]. Shenyang: University of Science and Technology of China, 2019.

[4]Oudriss A, Creus J, Bouhattate J, et al. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel [J]. Acta Materialia, 2012, 60(19): 6814-6828.

[5]Brass A M, Chanfreau A. Accelerated diffusion of hydrogen along grain boundaries in nickel [J]. Acta Materialia, 1996, 44(9): 3823-3831.

[6]Mine Y, Tachibana K, Horita Z. Grain-boundary diffusion and precipitate trapping of hydrogen in ultrafine-grained austenitic stainless steels processed by high-pressure torsion [J]. Materials Science and Engineering: A, 2011, 528(28): 8100-8105.

[7]Yao J, Cahoon J R. Experimental studies of grain boundary diffusion of hydrogen in metals [J]. Acta Metallurgica et Materialia, 1991, 39(1): 119-126.

[8]Shen Y F, Li X X, Sun X, et al. Twinning and martensite in a 304 austenitic stainless steel [J]. Materials Science and Engineering: A, 2012, 552: 514-522.

[9]Zhou C S, Song Y Y, Shi Q Y, et al. Effect of pre-strain on hydrogen embrittlement of metastable austenitic stainless steel under different hydrogen conditions [J]. International Journal of Hydrogen Energy, 2019, 44(47): 26036-26048.

[10]Li X G, Gong B M, Deng C Y, et al. Failure mechanism transition of hydrogen embrittlement in AISI 304 K-TIG weld metal under tensile loading [J]. Corrosion Science, 2018, 130: 241-251.

[11]Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels [J]. Materials Science and Engineering: A, 2016, 658: 400-408.

[12]Perng T P, Altstetter C J. Effects of deformation on hydrogen permeation in austenitic stainless steels [J]. Acta Metallurgica, 1986, 34(9): 1771-1781.

[13]Perng T P, Altatetter C J. Cracking kinetics of two phase stainless steel alloys in hydrogen gas [J]. Metallurgical Transactions A, 1988, 19: 145-152.

[14]Poundb G. The application of a diffusion-trapping model for hydrogen ingress in high-strength alloys[J]. National Association of Corrosion Enpineers, 1989, 45(1): 19-25.

[15]Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Analytical Chemistry, 1957, 29(11): 1701-1706.

[16]Choo W Y, Lee J Y. Thermal analysis of trapped hydrogen in pure iron [J]. Metallurgical Transactions A, 1982, 13:135-140.

[17]Sun G S, Du L X, Hu J, et al. On the influence of deformation mechanism during cold and warm rolling on annealing behavior of a 304 stainless steel [J]. Materials Science and Engineering: A, 2019, 746: 341-355.

[18]褚武扬, 乔利杰, 李金许,等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013.

Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion [M]. Beijing: Science Press, 2013.

[19]Wang D, Lu X, Wan D, et al. In-situ observation of martensitic transformation in an interstitial metastable high-entropy alloy during cathodic hydrogen charging [J]. Scripta Materialia, 2019, 173: 56-60.

[20]Allain S, Cugy P, Scott C. The influence of plastic instabilities on the mechanical properties of a high-manganese austenitic FeMnC steel [J]. Zeitschrift fur Metallkunde, 2008, 99(7): 734-738.

[21]Mao L Y, Luo Z A, Huang C, et al. Hydrogen embrittlement behavior in interstitial Mn-N austenitic stainless steel [J]. International Journal of Hydrogen Energy, 2022, 47(86): 36716-36732.

[22]Jedrychowski M, Tarasiuk J, Bacroix B, et al. Electron backscatter diffraction investigation of local misorientations and orientation gradients in connection with evolution of grain boundary structures in deformed and annealed zirconium.A new approach in grain boundary analysis [J]. Journal of Applied Crystallography, 2013, 46(2): 483-492.

[23]Han G, He J, Fukuyama S, et al. Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures [J]. Acta Materialia, 1998, 46(13): 4559-4570.

[24]Murakami Y, Kanezaki T, Mine Y, et al. Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels [J]. Metallurgical and Materials Transactions A, 2008, 39: 1327-1339.

[25]Wang Y F, Li X F, Dou D Y, et al. FE analysis of hydrogen diffusion around a crack tip in an austenitic stainless steel [J]. International Journal of Hydrogen Energy, 2016, 41(14): 6053-6063.

[26]Ahn D C, Sofronis P, Dodds J R H. On hydrogen-induced plastic flow localization during void growth and coalescence [J]. International Journal of Hydrogen Energy, 2007, 32(16): 3734-3742.

[27]Yokobori J A T, Nemoto T, Satoh K, et al. Numerical analysis on hydrogen diffusion and concentration in solid with emission around the crack tip [J]. Engineering Fracture Mechanics, 1996, 55(1): 47-60.

[28]Wang M Q, Akiyama E, Tsuzaki K. Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation [J]. Corrosion Science, 2006,48(8): 2189-2202.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9