Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Application of artificial neural network in the selection of lubricants in sheet metal drawing
Authors: Shanghai JiaoTong University  Lu Dong  Wang Dongzhe  He Dannong  Zhang Yongqing 
Unit:  
KeyWords: Artificial neural network  Coefficient of friction  Drawing  Lubricant  Error correction 
ClassificationCode:TG356.16
year,vol(issue):pagenumber:2000,25(2):47-50
Abstract:
Taking into consideration both the principal technological parameters and several parameters of lubricant,a model of artificial neural network is constructed to predict the average coefficient of friction under flange during drawing.The selections are made to choose proper lubricant under certain operating condition according to the predicted results.The predicted results show good agreement with experimental data.Then the experimental setup are described concisely which are designed by ourself and a formulation to correct experimental errors is introduced which works to give more accurate data.
Funds:
AuthorIntro:
Reference:
1  Zhang Zhiliang,Li Cheng. Study of the friction characteristics oflubricants and their affecting factors during drawing. J. Mater.Proc. Tech,1 997,63 :1 4 4~ 1 4 7
2 张立明 .人工神经网络的模型及应用 .上海 :复旦大学出版社 ,1 993 .
3 焦李成 .神经网络系统理论 .西安 :西安电子科技大学出版社 ,1 992 .
4 许永顺 ,邢渊 ,阮雪榆 .基于神经网络的塑性加工缺陷诊断与预测的方法研究 .锻压技术 ,1 998( 1 ) .
5 张兆春 ,吴铸等 .模式识别 -人工神经网络在改善汽车发动机缸体铸件力学性能方面的应用 .金属学报 ,1 998,3 4 ( 1 0 ) :1 0 68~ 1 0 72
6 张兴全 ,彭颖红 ,阮雪榆 .在数值模拟基础上利用神经网络进行缺陷预测 .锻压技术 ,1 998( 3 ) .
7  A Behrens,H Schafstall. 2 D and 3 D simulation of complexmultistage forging processes by use of adaptive friction coefficient.J. Mater. Proc. Tech. 1 998,80 -81 :2 98~ 3 0 3
8  P Myllykoski,JLarkiola,JNylander.Developmentof predictionmodel for mechanical properties of batch annealed thin steel stripby using artificial neural network modelling.J.Mater.Proc.Tech.1 998,60 :3 99~ 4 0 4
9  L A Dobrzanski,W Sitek. Application of a neural network inmodelling of hardenability of constructional steels.J.Mater.Proc.Tech. 1 998,78:59~ 66
1 0 宋世远 ,范新华等 .粘度指数改进剂对油性极压剂润滑性的影响研究 .润滑与密封 ,1 998( 6) .
1 1  JM Lanzon,M JCardew-Hall,P D Hodgson. Characterisingfrictional behaviourin sheetm etal forming.J.Mater.Proc.Tech.1 998,80 -81 :59~ 66
1 2 何丹农 ,沈利冰 ,程鹏 .研究拉深过程中的摩擦系数分布 .金属成形工艺 ,1 998( 1 6) :3 7~ 3 9
1 3  A M de Sanctis,A Forcellese,S M Roberts,P JWither.Frictionalbehaviour of Al3 59/Si C/2 0 p composite under isotherm al andnonisothermal hot-working conditions as a function of surfaceroughness. J. Mater. Proc. Tech. 1 997,72 :1 95~ 2 0 0
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com