Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Flow stress prediction in magnesium alloy based on BP neural networks
Authors: FU Ming-fu FAN Hong-chun ZHANG Ting-fang (Mechanical and Electronic school Nanchang University Nanchang 330031 China) 
Unit:  
KeyWords: BP neural network prediction flow stress magnesium alloy 
ClassificationCode:TG146.22
year,vol(issue):pagenumber:2008,33(2):157-159
Abstract:
BP neural network is better than the traditional mathematics module in nonlinear system prediction.To meet the demand of improving accuracy,the author designed the flow stress prediction model based on BP neural networks,which applied the neural networks to practical engineering in magnesium alloy ME20M.One mathematics module was presented upon the study of previous module with a good simulation result based on the actual data got from the magnesium alloy.The BP networks model shows that its performance is better than that of the traditional mathematics model in practice.
Funds:
江西省教育厅2006年资助项目。赣教技字[2006]53号
AuthorIntro:
Reference:
[1]陈振华.镁合金[M].北京:化学工业出版社,2004.
[2]王文先,张金山,许并社.镁合金材料的应用及其加工成型技术[J].太原理工大学学报,2001,32(6):599-603.
[3]李天生,徐慧.镁合金成形技术的研究和发展现状[J].材料研究与应用,2007,1(2):91-94.
[4]飞思科技产品研发中心.MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.
[5]周开利,康耀红.神经网络模型及MATLAB仿真程序[M].清华大学出版社,2004.
[6]张先宏.镁合金热变形过程试验研究和数值模拟[D].上海:上海交通大学,2003.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com