Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Experimental study on high strain rate sensitivity of aluminum alloy sheets 6016 used in automobile panels
Authors: Li Yanbo  Diao Keshan  Lu Xu  Jiang Haomin 
Unit: Research Institute of Baosteel State Key Laboratory of Development and Application Technology   of Automotive Steels (Baosteel) 
KeyWords: automobile panels  aluminum alloy sheet 6016 high strain rates sensitivity  Johnson-Cook   model  collision resistant performance 
ClassificationCode:TG386
year,vol(issue):pagenumber:2016,41(9):121-125
Abstract:

 Automotive crash safety is commonly predicted by simulation analysis, and its accuracy is 

 closely related to materials properties under high strain rates. For four kinds of automotive 
 
aluminum alloy sheets 6016 at home and abroad, high speed tensile tests were carried out at 
 
different stain rates(5-500 s-1), and data were analyzed by the model Johnson-Cook. Then, 
 
their mechanical properties (yield strength, tensile strength and elongation) and the stain 
 
rate sensitivity of crashworthiness were studied systemically. The results show that yield 
 
strength and tensile strength of aluminum alloy sheet 6016 have a low strain rate sensitivity, 
 
while the elongation and crashworthiness of aluminum alloy sheet 6016 have a high strain rate 
 
sensitivity.
Funds:
AuthorIntro:
李言波(1987-),男,硕士,助理工程师
Reference:

 
[1]   Jurgen Hirsch. Aluminium in innovative light-weight car design[J]. Materials Transactions,2011,52(5):818-824.


 
[2]   Sakurai T. Aluminum alloy sheet trends for automotive body panels[J]. Kobe Steel Engineering Reports, 2007,57(2):45-50.

 
[3]   Mallick P K. Material, Design and Manufacturing for Lightweight Vehicles[M]. London:Woodhead Publishing in Materials,2010.

 
[4]   黄世霖,张金换,王晓冬,等. 汽车碰撞与安全[M]. 北京:清华大学出版社, 2000. 

Huang S L, Zhang J H, Wang X D, et al. Car Crash and Safety[M]. Beijing: Tsinghua University Press, 2000.

 
[5]   Chen Y, Clausen A H, Hopperstad O S,et al. Stress-strain behaviour of aluminium alloys at a wide range of strain rates[J]. International Journal of Solids and 

Structures,2009,46:3825-3835.

 
[6]   Smerd R, Winkler S, Salisbury C, et al. High strain rate tensile testing of automotive aluminum alloy sheet[J]. International Journal of Impact Engineering,2005,32:541-560. 


[7]   Amit Pandey, Khan Akhtar S, Eun-Young Kim, et al. Experimental and numerical investigations of yield surface, texture, and deformation mechanisms in AA5754 over low to high temperatures and strain rates[J]. International Journal of Plasticity,2013,41:165-188.

 
[8]   Picu R C,Vincze G, Ozturk F, et al. Strain rate sensitivity of the commercial aluminum alloy AA5182-O[J]. Materials Science and Engineering A,2005,390: 334-343. 


[9]   Akhtar S Khan, Muneer Baig. Anisotropic responses, constitutive modeling and the effects of strain-rate and temperature on the formability of an aluminum alloy[J]. International Journal of Plasticity,2011,27: 522-538. 


[10]Clausen Arild H, Tore Brvik, Hopperstad Odd S, et al. Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality[J]. Materials Science and Engineering A,2004,364:260-272. 


[11]Farhoud Kabirian, Khan Akhtar S, Amit Pandey. Negative to positive strain rate sensitivity in 5XXX series aluminum alloys: Experiment and constitutive modeling[J]. International Journal of Plasticity,2014,55:232-246. 


[12]Hadianfard M J, Smerd R, Winkler S, et al. Effects of strain rate on mechanical properties and failure mechanism of structural Al-Mg alloys[J]. Materials Science and Engineering A,2008,492:283-292. 


[13]Djapic Oosterkamp L, Ivankovic A, Venizelos G. High strain rate properties of selected aluminium alloys[J]. Materials Science and Engineering A,2000,278:225-235. 


[14]Zhang D N,Shangguan Q Q, Xie C J, et al. A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy[J]. Journal of Alloys and Compounds,2015,619: 186-194. 


[15]Khan Akhtar S, Suh Yeong S, Xu Chen, et al. Nanocrystalline aluminum and iron: Mechanical behavior at quasi-static and high strain rates, and constitutive modeling[J]. International Journal of Plasticity,2006,22: 195-209. 


[16]Xu S, Tyson W R, Bouchard R, et al. Effects of strain rate and temperature on tensile flow behavior and energy absorption of extruded magnesium AM30 Alloy[J]. Journal of Materials Engineering and Performance,2009,11,(8):1091-1101. 


[17]Oliver S, Jones T B, Fourlaris G. Dual phase versus TRIP strip steels: Comparison of dynamic properties for automotive crash performance[J]. Journal of Materials Science & Technology,2007,(23):423-431. 


[18]Pantelakis Sp G,Alexopoulos N D, Chamos A N. Mechanical performance evaluation of cast magnesium alloys for automotive and aeronautical applications[J]. Journal of Engineering Materials and Technology,2007,129: 422-430.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com