Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Heat exposure property of burn-resistant titanium alloy WSTi3515S
Authors: Ma Fanjiao Lai Yunjin Xin Shewei Wang Xiaoliang Zhang Pingxiang Wang Biao Zhong Yan 
Unit: Western Superconducting Technologies Co.  Ltd. Northwest Institute for Nonferrous Metal Research  China Gas Turbine Establishment 
KeyWords: titanium alloy WSTi3515S burn-resistant titanium alloy heat exposure property thermal stability high temperature tensile properties 
ClassificationCode:TG146.2+3
year,vol(issue):pagenumber:2017,42(5):147-151
Abstract:
The tensile properties of alloy WSTi3515S slab samples were tested at room temperature and 100 ℃ after 550 ℃/100 h/AC heat exposure test. The tensile properties were tested at different temperatures from room temperature to 550 ℃ without heat exposure test. The results show that by the precipitation strengthening effect, the tensile strength of sample after heat exposure is slightly improved, but the plasticity is obviously decreased. However, the tensile strength at 100 ℃ is lower than that at room temperature, and the plasticity is higher. But it is still lower than the sample without heat exposure test. Furthermore, during heat exposure test, the second phase precipitated at grain boundary is the key feature of alloy WSTi3515S. It is also the reason for the decrease of the thermal stability of alloy WSTi3515S. Under improving the test temperature, the strength of the smooth tensile specimen decreases and the plasticity increases first and then decreases, while the strength of the notched tensile specimen decreases continually, the plasticity does not change obviously, and the elastic modulus decreases continually.
Funds:
陕西省科技统筹创新工程计划(2016KTCQ01-100);陕西省科技统筹创新工程计划(2016KTCQ01-81)
AuthorIntro:
马凡蛟(1985-),男,硕士,工程师
Reference:


[1]赖运金, 张平祥, 王凯旋,等. Ti-V-Cr系阻燃钛合金厚板组织与力学性能对比研究[J]. 材料导报,2016, 30 (10): 57-61.Lai Y J, Zhang P X, Wang K X, et al. A comparative study about microstructure and mechanical properties of Ti-V-Cr type burn-resistant titanium alloy slabs [J]. Materials Review, 2016, 30 (10): 57-61.
[2]刘全明,张朝晖,刘世锋, 等. 钛合金在航空航天及武器装备领域的应用与发展[J]. 钢铁研究学报,2015, 27(3):1-4.Liu Q M, Zhang Z H, Liu S F, et al. Application and development of titanium alloy in aerospace and military hardware[J]. Journal of Iron and Steel Research, 2015, 27(3):1-4.
[3]赖运金,张平祥,辛社伟, 等. 国内阻燃钛合金工程化技术研究进展[J]. 稀有金属材料与工程, 2015, 44(8): 2067-2073.Lai Y J, Zhang P X, Xin S W, et al. Research progress on engineered technology of burn-resistant titanium alloys in China[J]. Rare Metal Materials and Engineering, 2015, 44(8): 2067-2073.
[4]张鹏,朱强,秦鹤勇, 等. 航空发动机用耐高温材料的研究进展[J]. 材料导报,2014,28(11):27-31,37.Zhang P, Zhu Q, Qin H Y, et al. Research progress of high temperature materials for aero-engines [J]. Materials Review,2014,28(11):27-31, 37.
[5]Lai Y J, Zhang P X, Zhang X M, et al. Physical properties of WSTi3515S burn-resistant titanium alloy[J]. Rare Metals,2016, 35(5):361-366.
[6]赖运金,张维,王晓亮, 等. WSTi3515S阻燃钛合金的工程化制备及力学性能研究[J]. 钛工业进展,2015, 32(6):13-18.Lai Y J, Zhang W, Wang X L, et al. Industrial manufacturing and mechanical properties of WSTi3515S burn-resistant titanium alloy [J]. Titanium Industry Progress, 2015, 32(6):13-18.
[7]赵红霞,黄旭,王宝, 等. 热处理对Ti-35V-15Cr-0.15Si-0.05C合金热稳定性能的影响[J]. 材料工程,2013,(7):73-77.Zhao H X, Huang X, Wang B, et al. Effect of heat-treatment on the microstructure and thermal stability properties of Ti-35V-15Cr-0.15Si-0.05C titanium alloy [J]. Journal of Materials Engineering, 2013, (7):73-77.
[8]赖运金,张平祥,辛社伟, 等. 热处理对WSTi3515S合金组织和性能的影响[J]. 稀有金属材料与工程,2015,44(6):1469-1473.Lai Y J, Zhang P X, Xin S W, et al. Effect of heat treatment on microstructure and mechanical properties of WSTi3515S alloy[J]. Rare Metal Materials and Engineering, 2015, 44(6):1469-1473.
[9]舒滢,黄张洪,彭雯雯,等. 铸态Ti40阻燃钛合金高温拉伸力学性能及断裂行为研究[J]. 材料导报,2014, 28(20):84-87.Shu Y, Huang Z H, Peng W W, et al. High temperature tensile mechanical properties and fracture behavior of as-cast Ti40 burn resistant titanium alloy[J]. Materials Review,2014, 28(20):84-87.
[10]张文泉,王俊英,张学昆. 金属材料拉伸试验的缺口效应[J]. 理化检验:物理分册,2008, 44(10):533-535.Zhang W Q, Wang J Y, Zhang X K. Notch effect of metallic material during tensile testing [J]. Physical Testing and Chemical Analysis Part A:Physical Testing,2008, 44(10):533-535.
[11]宋迎东,胡绪腾,刘华翔. 钛合金缺口试样拉伸破坏载荷预测[J]. 南京航空航天大学学报,2014, 46(4):487-493.Song Y D, Hu X T, Liu H X. Prediction of broken load for notched specimen of titanium alloy [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(4):487-493.
[12]刘海军,曹睿,何洪, 等. K418合金缺口敏感性研究[J]. 稀有金属,2010, 34(5):69-74.Liu H J, Cao R, He H, et al. Notch sensitivity of K418 alloy [J]. Chinese Journal of Rare Metals, 2010, 34(5):69-74.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com