[1]Kennedy R L. Allvac 718PlusTM, superalloy for the next forty years[A]. Loria E A. Sixth International Symposium on Superalloys 718, 625, 706 and Derivatives[C]. Pennsylvania: TMS, 2005.
[2]郭建亭. 高温合金材料学[M]. 北京:科学出版社,2010.
Guo J T. Materials Science and Engineering for Superalloys[M]. Beijing: Science Press, 2010.
[3]张方,王林岐.国内外GH4169棒材质量稳定性分析[J]. 锻压技术,2016, 41(9): 111-120.
Zhang F, Wang L Q. Analysis on quality stability of alloy GH4169 bars at home and abroad [J]. Forging & Stamping Technology, 2016, 41 (9): 111-120.
[4]Ruiz C, Obabueki A, Gillespie K. Evaluation of the microstructure and mechanical properties of delta processed alloy 718[A]. Antolovich S D. Seventh International Symposium on Superalloys[C]. Pennsylvania: TMS, 1992.
[5]Dix A W, Hyzak J M, Singh R P. Application of ultra fine grain alloy 718 forging billet[A]. Antolovich S D. Superalloys[C]. Warrendale, PA: TMS, 1992.
[6]Krueger D D. The development of direct age 718 for gas turbine aging disk applications[A]. Loria E A. Superalloy 718-Metallurgy and Applications[C]. Warrendale, PA: TMS,1989.
[7]Connolley T, Reed P A S, Starink M J. Short crack initiation and growth at 600 ℃ in notched specimens of inconel 718[J]. Materials Science and Engineering: A, 2003, 340 (1-2):139-154.
[8]Lu H J, Jia X C, Zhang K F, et al. Fine-grained pretreatment process and superplasticity for inconel 718 superalloy[J]. Materials Science and Engineering A, 2002, 326(2): 382-385.
[9]李树祺,庄景云, 谢锡善,等. GH169合金显微组织对合金裂纹扩展速率的影响[J].材料工程,1998, (5):26-27.
Li S Q, Zhuang J Y, Xie X S, et al. Effcet of microstructutes on crack propagation rate of GH167 alloy[J].Journal of Materials Engineering, 1998, (5):26-27.
[10]Pieraggi B, Uginet J F. Fatigue and creep properties in relation with alloy 718 microstructure[A]. Loria E A. Superalloys 718,625,706 and Various Derivatives[C]. Warrendale, PA: TMS, 1994.
[11]Li S Q, Zhuang J Y, Yang J Y, et al. The effect of δ phase on crack propagation under creep and fatigue conditions in alloy 718[A]. Loria E A. Superalloys 718,625,706 and Various Derivatives[C].Warrendale, PA:TMS,1994.
[12]李志强, 张宁, 王宝雨, 等. GH4169合金热变形微观组织演变模型[J]. 塑性工程学报,2014,21(5):100-104.
Li Z Q, Zhang N, Wang B Y, et al. Microstructure model of GH4169 alloy during hot forming[J]. Journal of Plasticity Engineering, 2014, 21(5): 100-104.
[13]王博,易丹青,丁学峰,等. FGH4169合金的高温变形行为[J].中南大学学报:自然科学版, 2013,44(11):4408-4414.
Wang B, Yi D Q, Ding X F, et al. Hot deformation behavior of FGH4169 superalloy[J]. Journal of Central South University: Science and Technology, 2013, 44(11):4408-4414.
[14]张付军,周晚林,陈文豪. GH4169合金不同变形条件下的流变应力研究[J]. 电气与自动化,2014,43(5):203-205.
Zhang F J, Zhou W L, Chen W H. Flow stress of GH4169 alloy under different hot deformation conditions[J]. Machine Building & Automation,2014,43(5):203-205.
[15]Weis M J, Mataya M C, Thompson S W. The hot deformation behavior of an as-cast alloy 718 ingot [A]. Loria E A. Superalloys 718[C]. Warrendale, PA:TMS, 1989.
[16]Zhou L X, Baker T N. Effects of strain rate and temperature on deformation behaviour of IN 718 during high temperature deformation [J]. Materials Science & Engineering A, 1994, 177(1-2): 1-9.
[17]Zhang J M, Gao Z Y, Zhuang J Y, et al. Mathematical modeling of the hotdeformation behavior of superalloy IN718[J]. Metallurgical and Materials Transactions A, 1999, 30(10): 2701-2713.
[18]牛济泰. 材料和热加工领域的物理模拟技术[M]. 北京: 国防工业出版社, 1999.
Niu J T. Physical Simulation in Materials and Hot-working[M]. Beijing: National Defense Industry Press, 1999.
[19]Thomas A, Ei-Wahabi M, Cabrera J M. High temperature deformation of inconel 718[J]. Journal of Materials Processing Technology, 2006, 177(1-3): 469-472.
[20]Yuan H, Liu W C. Effect of the δ phase on the hot deformation behavior of Inconel 718[J]. Materials Science & Engineering A, 2005,408(1-2):281-289.
[21]Lin Y C, Chen M S, Zhong J. Prediction of 42CrMo steel flow stress at high temperature and strain rate[J]. Mechanics Research Communications, 2008, 35(3):142-150.
[22]Lin Y C, Wen D X,Deng J,et al. Constitutive models for hightemperature flow behaviors of a Nibased superalloy[J]. Materials & Design, 2014, 59(9):115-123.
[23]Lin Y C, Li K K, Li H B, et al. New constitutive model for hightemperature deformation behavior of Inconel 718 superalloy[J]. Materials & Design, 2015,74: 108-118.
[24]Cingara A, Mcqueen H J. New formula for calculating flow curves from high temperature constitutive data for 300 austenitic steels[J]. Journal of Materials Processing Technology,1992, 36(1):31-42.
[25]Kashyap B P, Chaturvedi M C. Activation energy for superplastic deformation of IN718 superalloy[J]. Scripta Materialia, 2000, 43(5): 429-433.
[26]Frost H J, Ashby M F. Deformationmechanism Maps: The Plasticity and Creep of Metals and Ceramics[M]. Oxford: Pergamon Press, 1982.
[27]Wang K, Li M Q, Luo J, et al. Effect of the δ phase on the deformation behavior in isothermal compression of superalloy GH4169[J]. Materials Science & Engineering A, 2011, 528(13-14):4723-4731.
|