Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence and optimization of different process parameters on forming of a thin-plate and multi-ribbed part
Authors: Dong Beibei  Li Guojun  Zhang Zhimin  Che Xin 
Unit: North University of China 
KeyWords: aluminum alloy  thin-plate and multi-ribbed part  isothermal extrusion  forming load  orthogonal test  finite element simulation 
ClassificationCode:TG386
year,vol(issue):pagenumber:2018,43(4):42-46
Abstract:

The forming process parameters of a thin-plate and multi-ribbed part were studied, and the forming process was simulated by finite element simulation software. Based on the orthogonal test method and data analysis software, the extrusion temperature, extrusion speed and friction coefficient were optimized, and the optimum isothermal extrusion forming scheme was determined with the extrusion temperature of 480 ℃, the extrusion speed of 1 mm·s-1 and the friction coefficient of 0.1, and the smallest forming load was 6.49 MN. In addition, in order to verify the reasonability of orthogonal test data, based on the simulation and orthogonal optimization, the actual extrusion test was conducted by the 3000 t press, and the forming performance of part was consistent with the finite element simulation results. The results show that it is feasible to optimize the extrusion process parameters of large thin-plate and multi-ribbed part through the orthogonal test method, which can shorten the production period and improve the material utilization.

Funds:
山西省自然科学基金资助项目(2013011022-5)
AuthorIntro:
董蓓蓓(1993-),女,硕士研究生;E-mail:dongbb1111@163.com;通讯作者:张治民(1956-),男,博士,教授,博士生导师;E-mail:zbzhangzhimin@126.com
Reference:

[1]梁柱, 李国俊, 张治民,. 5A06铝合金带筋薄板件挤压缺陷的模拟分析及优化[J]. 锻压技术, 2016,41(2):51-57.


Liang Z, Li G J, Zhang Z M, et al. Simulation analysis and optimization of extrusion defects for aluminum alloy 5A06 sheet with rib [J]. Forging & Stamping Technology, 2016, 41 (2): 51-57.


[2]吴耀金, 张治民. 铝合金LF6变形工艺与微观组织关系的研究[J]. 热加工工艺, 2006, 35(8):25-27.


Wu Y J, Zhang Z M. Research on relationship of deformation process and microstructure of aluminum alloy LF6 [J]. Hot Working Technology, 2006, 35(8): 25-27.


[3]柏立敬,冯再新,张治民. 5A06铝合金变形工艺参数与显微组织关系实验研究 [J]. 有色金属加工,2007,366):14-16,25.


Bai L J, Feng Z X, Zhang Z M. Experimental research on relationship between deformation factors and microstructures of 5A06 aluminum alloy [J]. Nonferrous Metals Processing, 2007, 36 (6):14-16,25.


[4]刘龙飞, 胡少华,卢立伟.切削速度对AZ31镁合金高速切削切屑形成的影响[J]. 稀有金属,201640 (7): 654-659.


Liu L F, Hu S H, Lu L W. Effect of cutting velocity on sawtooth chip of AZ31 magnesium alloy under high-speed cutting [J]. Chinese Journal of Rare Metals, 2016,40 (7): 654-659.


[5]宋超, 李国俊,张治民,等.某复杂盒体零件成形工艺[J]. 锻压技术,2016, 4111):15-20.


Song C, Li G J, Zhang Z M, et al. Forming technology of a complex box-shaped part [J]. Forging & Stamping Technology, 2016, 4111: 15-20.


[6]任大为. 稀土镁合金变壁厚叶片成形工艺研究[D]. 太原:中北大学, 2014.


Ren D W. The Molding Technology Study of Rare Earth Magnesium Alloy of Variable Wall Thickness Blade[D]. Taiyuan: North University of China, 2014.


[7]贾俐俐.挤压工艺及模具[M].北京:机械工业出版社,2004.


Jia L L. Extrusion Technology and Die [M]. Beijing: China Machine Press, 2004.


[8]王明哲,王麟平,张宝红,等.铝合金锥壳体成形工艺分析[J]. 热加工工艺,2013, 42 (5)24-26.


Wang M Z, Wang L P, Zhang B H, et al. Analysis on forming process of aluminum alloy conical shell [J]. Hot Working Technology, 2013, 42 (5):24-26.


[9]Yang Q S, Jiang B, Xiang Q, et al. Microstructure evolution and corrosion performance of AZ31 magnesium alloy sheets [J]. Rare Metal Materials and Engineering, 2016, 45 (7): 1674-1677.


[10]董丽,邢同超,周淑芳,等. 基于正交试验的汽车引擎外板成形工艺参数优化[J]. 锻压技术,2016, 4111):62-64.


Dong L, Xing T C, Zhou S F, et al. Optimization of forming process parameters for automobile engine cover based on orthogonal experiment[J]. Forging & Stamping Technology 2016, 4111: 62-64.


[11]李大乔. 7075铝合金瞄准镜座热塑性成形数值模拟及成形工艺研究[D]. 南京:南京理工大学, 2014.


Li D Q. Numerical Simulation and the Forming Process Research for Thermoplastic Deformation of 7075 Aluminum Alloy Sight [D]. NanjingNanjing University of Science & Technology, 2014.


[12]刘瑞江,张业旺,闻崇炜,. 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010, 27(9): 52-55.


Liu R J, Zhang Y W, Wen C W, et al. Study on the design and analysis methods of orthogonal experimental [J]. Experimental Technology and Management, 2010, 27(9): 52-55.


[13]何秋月. SPSSL9(34)正交试验数据处理中的应用[J]. 中国中医药现代远程教育, 2005, 18(12):27-29.


He Q Y. Application of SPSS on data processing in L9(34) orthogonal test [J]. Chinese Medicine Modern Distance Education of China, 2005, 18(12): 27-29.


[14]Xu J, Yang H, Li H, et al. Significance-based optimization of processing parameters for thin-walled aluminum alloy tube NC bending with small bending radius [J]. Transaction of Nonferrous Metals Society of China, 2012, 22 (1): 147-156.


[15]Li C, Yang H, Zhan M, et al. Effects of process parameters on numerical control bending process for large diameter thin-walled aluminum alloy tubes [J]. Transaction of Nonferrous Metals Society of China, 2009, 19 (3): 668-673.


[16]Zhang C S, Zhao G Q, Chen H, et al. Numerical simulation and metal flow analysis of hot extrusion process for a complex hollow aluminum profile [J]. International Journal of Advantaged Manufacturing Technology, 2012, 60 (1): 101-110.


[17]Yang D Y, Park K, Kang Y S. Integrated finite element simulation for the hot extrusion of complicated Al alloy profiles [J]. Journal of Material Process Technology, 2011, 111 (1-3): 25-30.


[18]李峰,林俊峰,初冠南,等.铝合金锻件成形工艺及三维有限元分析[J]. 中国有色金属学报,2009, 19 (7): 1197-1202.


Li F, Lin J F, Chu G N, et al. 3D finite element analysis and forging process of aluminum alloy forging parts [J]. The Chinese Journal of Nonferrous Metals, 2009, 19 (7): 1197-1202.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com