Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Densification behavior of powder pressing for Ag-Cu solder
Authors: Liu Yunzhan  Hu Jianhua  Huang Shangyu  Hu Fei  Ding Pengfei  Li Xin 
Unit: Wuhan University of Technology 
KeyWords: Ag-Cu solder  powder pressing  EDEM  discrete element  density of compaction numerical simulation 
ClassificationCode:TF124
year,vol(issue):pagenumber:2018,43(4):76-82
Abstract:

Based on Hysteretic Spring contact model, the pressing process of BAg72Cu28 and BAg47Cu53 solder was simulated by discrete element software EDEM, and the pressing experiments at low speed of BAg47Cu53 solder were carried out. Then, the influences of forming mechanism, characteristics of velocity field, pressing speed and friction coefficient of solder pressing on the density of compaction were analyzed. The results show that the velocity of top powder is the biggest in the early stage of pressing, while the velocity of middle powder is the biggest in the middle and late stages of pressing. The density distribution characteristics of compaction are in agreement with the velocity field characteristics in the middle and late stages. The density uniformity of compaction in high speed pressing is better than that in low speed pressing when pressing the same density of compaction. But the lower the friction coefficient between particles is, the higher the density uniformity of compaction is. And, the lower the friction coefficient under the same pressing force is, the higher the density of compaction is. In addition to the loose state, the density difference of compaction between simulation and experiment in low speed pressing of BAg47Cu53 solder is less than 6%, and the Hysteretic Spring contact model has higher simulation accuracy for solder pressing simulation.
 

Funds:
国家自然科学基金资助项目(51475345);华中科技大学材料成形与模具技术国家重点实验室开放基金(P2015-01)
AuthorIntro:
刘运展(1993-),男,硕士研究生;E-mail:453178919@qq.com;通讯作者:胡建华(1966-),男,博士,副教授;E-mail: hujianhua@whut.edu.cn
Reference:

[1]Watanabe T, Yanagisawa A, Sasaki T. Development of Ag based brazing filler metal with low melting point[J]. Science and Technology of Welding & Joining, 2011, 16(6): 502-508.


[2]张启运,庄鸿寿. 钎焊手册[M]. 北京: 机械工业出版社, 2008.


Zhang Q Y, Zhuang H S. Braze Welding Manual[M]. Beijing: China Machine Press, 2008.


[3]张亮, Tu King Ning, 陈信文,. 近十年中国无铅钎料研究进展[J]. 中国科学: 技术科学, 2016, 46(8):767-790.


Zhang L, Tu King Ning, Chen X W, et al. Development of lead-free solders in China during the past decade[J]. Scientia Sinica Technologica, 2016, 46(8): 767-790.


[4]许兰娇, 黄尚宇, 郑菲, . 基于电磁压制的Ag-Cu-Ge钎料合金成形工艺[J]. 锻压技术,2017,42(9):63-68.


Xu L J, Huang S Y, Zheng F, et al. Forming process of brazing alloy Ag-Cu-Ge based on electromagnetic compaction[J]. Forging & Stamping Technology, 2017, 42(9):63-68.


[5]李海红, 张士宏, 陈岩, . 稀土精炼紫杂铜组织和性能的研究[J]. 稀有金属,2016,40(1):48-56.


Li H H, Zhang S H, Chen Y, et al. Microstructure and properties of impure red-coppers refined by rare earths[J]. Chinese Journal of Rare Metals, 2016, 40(1):48-56.


[6]胡建华, 尚会森, 程呈, .金属粉末压制成形理论与工艺进展[J].热加工工艺,2012, 41(20):45-48.


Hu J H, Shang H S, Cheng C, et al. Research progress of metal powder compression theory and technology[J]. Hot Working Technology, 2012, 41(20):45-48.


[7]孟正华,黄尚宇,常宏,. 线圈及集磁器结构对陶瓷粉末电磁压制的影响[J]. 锻压技术,2006, 31(4):138-140+144.


Meng Z H, Huang S Y, Chang H, et al. Effects of coil and field shaper structure on electromagnetic compaction of ceramic powder.[J]. Forging & Stamping Technology, 2006, 31(4):138-140+144.


[8]赵剑峰,马智勇,谢德巧,. 金属增材制造技术[J]. 南京航空航天大学学报,2014,46(5):675-683.


Zhao J F, Ma Z Y, Xie D Q, et al. Metal additive manufacturing technique[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(5):675-683.


[9]林鑫,黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学,2015,45(9):1111-1126.


Lin X, Huang W D. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica Informationis, 2015,45(9):1111-1126.


[10]Martin C L, Bouvard D. Study of the cold compaction of composite powders by the discrete element method[J]. Acta Materialia, 2003, 51(2):373-386.


[11]曹秒艳,李建超,苑亚宁,. 基于DEM-FEMAZ31B板材软模成形极限预测[J]. 中国有色金属学报,2017, 27(4):675-683.


Cao M Y, Li J C, Yuan Y N, et al. Forming limit prediction in flexible die forming of AZ31B sheet based on combination of DEM-FEM[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4):675-683.


[12]王爽. 离散单元法在金属粉末高速压制成形过程中的应用研究[D]. 长沙:中南大学,2012.


Wang S. Application Research of Discrete Element Method in Metal Powder High Velocity Compaction[D]. Changsha: Central South University, 2012.


[13]王国强,郝万军,王继新.离散单元法及其在EDEM上的实践[M]. 西安:西北工业大学出版社,2010.


Wang G Q, Hao W J, Wang J X. Discrete Element Method and Its Practice on EDEM[M]. Xi′an: Northwestern Polytechnic University Press, 2010.


[14]Walton O R. Review of adhesion fundamentals for micron-scale particles[J]. Powder & Particle, 2008, 26(1):129-141.


[15]Ai J, Chen J F, Rotter J M, et al. Assessment of rolling resistance models in discrete element simulations[J]. Powder Technology, 2011, 206(3):269-282.


[16]胡国明. 颗粒系统的离散元素法分析仿真:离散元素法的工业应用与EDEM软件[M].武汉:武汉理工大学出版社, 2010.


Hu G M. Discrete Element Analysis Simulation of Granular System: Industrial Application of Discrete Element Method and EDEM Software[M]. Wuhan: Wuhan University of Technology Press, 2010.


[17]郑洲顺,徐勤武,朱远鹏,. 金属粉体高速压制成形过程的应力-应变曲线特征分析[J]. 中国有色金属学报,2011, 21(4):888-893.


Zheng Z S, Xu Q W, Zhu Y P, et al. Characteristics analysis of stress-strain curves of metal powers during high velocity compaction process[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(4):888-893.


[18]Zhang Y X, An X Z, Zhang Y L. Multi-particle FEM modeling on microscopic behavior of 2D particle compaction[J]. Applied Physics A, 2015, 118(3):1015-1021.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com