Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of solid solution time on microstructure and properties of 7050 aerial aluminum alloy forgings
Authors:  Xiao Hong1 Qiu Zelin2 
Unit: (1.College of Mechanical and Electrical Engineering Yangtze Normal University Chongqing 408100 China   2.College of Materials Science and Engineering Chongqing University Chongqing 400044 China) 
KeyWords: solid solution time  7050 aerial aluminum alloy the second phase particle  fracture morphology  mechanical properties 
ClassificationCode:TG146.2
year,vol(issue):pagenumber:2019,44(2):150-155
Abstract:

 

 
The influences of solid solution time on mechanical properties, fracture morphology and fracture toughness of 7050 aerial aluminum alloy forgings were studied by differential scanning calorimetry (DSC), tensile at room temperature, fracture mechanics experiment, scanning electron microscopy(SEM) and energy spectrum analysis. The results show that when the solid solution time is less than 90 min, with the increase of solid solution time, the second phase particles in the alloy dissolve into the matrix gradually, and the remaining coarse second phase particles are mainly Al2CuMg and Al7Cu2Fe phases. When the solid solution time is 90 min, the tensile strength,yield strength and fracture toughness of 7050 aluminum alloy forgings reach the maximum value of 530 MPa, 490 MPa and 37.7 MPa·m1/2,respectively, and the fracture mode of 7050 aluminum alloy is mainly the slipseparation fracture in ductile fracture. When the solid solution time is between 30-90 min, with the increase of solid solution time, the size,number and depth of the dimple increase. However, if the solid solution time increases continuously, the number and depth of dimples decrease gradually. Thus, the optimal solid solution treatment for 7050 aerial aluminum alloy forging is 475 ℃×90 min.
 
Funds:
基金项目:国家自然科学基金面上项目(51575067)
AuthorIntro:
作者简介:肖红(1989-),男,硕士,助教 Email:xh138967@163.com
Reference:

 


 

 


[1]Burns J T, Gupta V K, Agnew S R, et al. Effect of low temperature on fatigue crack formation and microstructurescale propagation in legacy and modern AlZnMgCu alloys
[J]. International Journal of Fatigue, 2013, 55(7):268-275.

 


[2]Xu L, Dai G, Huang X, et al. Foundation and application of AlZnMgCu alloy flow stress constitutive equation in friction screw press die forging
[J]. Materials & Design, 2013, 47(9):465-472.

 


[3]Chen S, Chen K, Dong P, et al. Effect of recrystallization and heat treatment on strength and SCC of an AlZnMgCu alloy
[J]. Journal of Alloys & Compounds, 2013, 581(18):705-709.

 


[4]Ghiaasiaan R, Zeng X, Shankar S. Controlled diffusion solidification (CDS) of AlZnMgCu (7050): Microstructure, heat treatment and mechanical properties
[J]. Materials Science & Engineering A, 2014, 594(2):260-277.

 


[5]周思雨,王向杰,丁晚景,等.7050超高强铝合金的强韧化工艺研究
[J].铸造技术,2018,39(8): 1810-1813.

 

Zhou S Y, Wang X J, Ding W J, et al. Study on the strengthening and toughening process of 7050 ultrahigh strength aluminum alloy
[J]. Casting Technology, 2018, 39 (8): 1810-1813. 

 


[6]徐戊矫,唐农杰,江长友,等.双级固溶双级时效处理对7050铝合金组织与性能的影响
[J].热加工工艺,2018,47(8): 226-229.

 

Xu W J, Tang N J, Jiang C Y, et al. Effect of twostage solution and twostage aging treatment on the structure and properties of 7050 aluminum alloy
[J]. Hot Working Process, 2018, 47 (8): 226-229.

 


[7]祝贞凤,李辉,史春丽,等.双级时效对A1ZnMgCu合金组织和力学性能的影响
[J].金属热处理,2017,42(10):71-74.

 

Zhu Z F, Li H, Shi C L, et al. Effect of twostage aging on the microstructure and mechanical properties of A1ZnMgCu alloy
[J]. Heat Treatment of Metals, 2017, 42(10):71-74.

 


[8]毛建中,郭灵智,周慧,等.复合时效消除工件残余应力的工艺研究
[J].锻压技术,2018,43(10):151-156.

 

Mao J Z, Guo L Z, Zhou H, et al. Study on process of eliminating workpiece residual stress with composite aging
[J]. Forging & Stamping Technology, 2018,43(10): 151-156.

 


[9]GB/T 228.1—2010,金属材料拉伸试验:温试验方法
[S].

 

GB/T 228.1—2010, Tensile tests of metal materials: Temperature testing method
[S]. 

 


[10]GB/T 4161—2007,金属材料平面应变断裂韧度KIC试验方法
[S]. 

 

GB/T 4161—2007, KIC test method for plane strain fracture toughness of metal materials
[S]. 

 


[11]Starink M J. Effect of compositional variations on characteristics of coarse intermetallic particles in overaged 7000 aluminium alloys
[J]. Metal Science Journal, 2001, 17(11):1324-1328.

 


[12]Wang T, Yin Z M, Sun Q. Effect of homogenization treatment on microstructure and hot workability of high strength 7B04 aluminium alloy
[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(2):335-339.

 


[13]张新明,何道广,刘胜胆,等.多级强化固溶处理对7050铝合金厚板强度和断裂韧性的影响
[J].中国有色金属学报,2012,22(6):1546-1554.

 

Zhang X M, He D G, Liu S D, et al. Effect of multistage solution treatment on strength and fracture toughness of 7050 aluminium alloy thick plate
[J]. Chinese Journal of Nonferrous Metals, 2012, 22(6): 1546-1554.

 


[14]王梁,陈国强,郑明玉,等. 某型号前轴疲劳试验及结果分析
[J]. 锻压技术,2017,42(5):119-122.

 

Wang L,Chen G Q,Zheng M Y,et al. Fatigue test and result analysis on a vehicle front axle
[J]. Forging & Stamping Technology, 2017, 42(5): 119-122.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com