Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of claddingrolling conditions on microstructure and properties of Ti64 titanium alloy
Authors:    Xia Xiangchun 
Unit: (Department of Electrical and Mechanical Engineering  Yongcheng Vocational College  Yongcheng 476600  China) 
KeyWords: titanium alloy  claddingrolling  microstructure  mechanical property  Schmidt factor 
ClassificationCode:TG146
year,vol(issue):pagenumber:2019,44(2):182-188
Abstract:

 

 
In order to study the influence of claddingrolling conditions on the structure and properties of Ti64 titanium alloy, Ti64 titanium alloy sheets were coated and rolled under different temperatures and reduction ratios. Then, the specimens were made, and the microstructure, texture and tensile mechanical properties of Ti64 titanium alloy were analyzed by optical microscope, EBSD and tensile tester. The results show that Ti64 titanium alloy coated and rolled at 930 ℃ exhibits a twophase structure, and its tensile strength and elongation in the direction of RD and TD are both larger than that of coated and rolled at 1050 ℃. Increasing the rolling reduction ratio is beneficial to promote the full recrystallization of alloy, and the comprehensive mechanical properties of Ti64 titanium alloy prepared at 930 ℃ and rolling compression rate of 87% are the best. All the Ti64 titanium alloy coated and rolled at 1050 ℃ exhibits a Widmanstatten structure, and the Schmidt factor of 1050 ℃-87% sample fluctuates greatly and exhibits a diversified slip system. So the tensile mechanical properties anisotropy becomes smaller.
 
Funds:
基金项目:河南省科技发展计划基金(092300410135);河南省高等学校重点科研基金 (16B460009)
AuthorIntro:
作者简介:夏祥春 (1981-),男,学士,讲师 Email:wt.lewis@foxmail.com
Reference:

 


 

 


[1]Lieblich M, Barriuso S, Multigner M, et al. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles:Effects on the microstructure, residual stresses and mechanical properties
[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54(9):173-184.

 


[2]Schauerte O. Titanium in automotive production
[J]. Advanced Engineering Materials, 2003, 5(6):411-418.

 


[3]Yu H L, Yan M, Li J T, et al. Mechanical properties and microstructure of a Ti6Al4V alloy subjected to cold rolling, asymmetric rolling and asymmetric cryorolling
[J]. Materials Science & Engineering A, 2017,710(10):75-85.

 


[4]Li G, Qu S, Xie M X, et al. Effect of ultrasonic surface rolling at low temperatures on surface layer microstructure and properties of HIP Ti6Al4V alloy
[J]. Surface & Coatings Technology, 2017, 316(1):75-84.

 


[5]Liu Y, Hu J, Zhang Y, et al. Joining of zirconia and Ti6A14V using a Tibased amorphous filler
[J]. Journal of Materials Science & Technology, 2011, 27(7):653-658.

 


[6]Leyens C, Peters M. Titanium and Titanium Alloys:Fundamentals and Applications
[M]. Germany:WileyVCH,2003.

 


[7]Traverso P, Canepa E. A review of studies on corrosion of metals and alloys in deepsea environment
[J]. Ocean Engineering, 2014, 87(9):10-15.

 


[8]洪权, 赵永庆, 杨冠军, 等. Ti6Al4V合金包覆叠轧薄板的加工工艺与组织性能研究
[J]. 材料工程, 2004,49(11):15-17.

 

Hong Q, Zhao Y Q, Yang G J, et al. Effects of pack plyrolling process on microstructure and mechanical properties of Ti6Al4V alloy sheets
[J]. Journal of Materials Engineering, 2004,49(11):15-17.

 


[9]庞洪, 张海龙, 王希哲,等. 包覆叠轧TA7钛合金薄板的组织与力学性能
[J]. 中国有色金属学报, 2010, 20(b10):66-69.

 

Pang H, Zhang H L, Wang X Z, et al. Microstructures and mechanical properties of TA7 alloy sheet produced by pack plyrolling process
[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(b10):66-69.

 


[10]Liang Y F, Ye T, Xu S,et al. Insitu control of microstructure and mechanical properties during hot rolling of highNb TiAl alloy
[J]. The Chinese Journal of Nonferrous Metals:English,2017,27(12):7-14.

 


[11]Wang H, Yu Z, Lei Z, et al. Achieving high strength and high ductility in magnesium alloy using hardplate rolling (HPR) process
[J]. Scientific Reports, 2015, (11):17-24.

 


[12]Wu T, Jin L, Wu W X, et al. Improved ductility of MgZnCe alloy by hot packrolling
[J]. Materials Science and Engineering:A, 2013, 584(6):97-102.

 


[13]程帅朋, 苏娟华, 任凤章. 锻后热处理温度对TA10钛合金组织及性能的影响
[J]. 金属热处理, 2016, 41(10):158-161.

 

Cheng S P, Su J H, Ren F Z. Effect of heat treatment temperature after forging on microstructure and properties of TA10 titanium
[J]. Heat Treatment of Metals, 2016, 41(10):158-161.

 


[14]崔忠圻, 覃耀春. 金属学与热处理
[M]. 2版. 北京:机械工业出版社, 2007.

 

Cui Z Q, Tan Y C. Metallography and Heat Treatment
[M]. The 2nd Edition. Beijing:China Machine Press, 2007.

 


[15]Britton T B, Birosca S, Preuss M, et al. Electron backscatter diffraction study of dislocation content of a macrozone in hotrolled Ti6Al4V alloy
[J]. Scripta Materialia, 2010, 62(9):639-642.

 


[16]Song J H, Hong K J, Ha T K, et al. The effect of hot rolling condition on the anisotropy of mechanical properties in Ti6Al4V alloy
[J]. Materials Science & Engineering A, 2007, 449-451(13):144-148.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com