Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Flow stress model of 25Cr2Ni4MoV steel in hot compression test
Authors: Ye Liyan Zhai Yuewen Zhou Leyu Lu Jianbang Jiang Peng 
Unit: Beijing Research Institute of Mechanical and Electrical Technology Ltd. China National Machinery Industry Corporation Ltd. 
KeyWords: super large low pressure integral rotor  25Cr2Ni4MoV steel  hot compression  flow stress-strain curve  constitutive equation 
ClassificationCode:TG113
year,vol(issue):pagenumber:2019,44(3):144-148
Abstract:

25Cr2Ni4MoV steel is used to forge super large low pressure integral rotor. A set of hot compression experiments about  25Cr2Ni3MoV steel was conducted by thermal-mechanical simulator Gleeble-1500, and the true stress-true strain curves were achieved under temperatures 900, 1000, 1100, 1150, 1200 and 1250 ℃, strain rates 0.001,0.005,0.01,0.05,0.1 and 0.5 s-1 and compressive strain 60%, respectively. The experimental results show that when the temperature is constant, the maximum stress increases with the increasing strain rate, and when the strain rate is constant, the maximum stress decreases with the increasing temperature. Under the certain deformation conditions, the flow stress-strain curve of high temperature appears the typical characteristic of dynamic recrystallization stress-strain curve with single peak. Furthermore, the activation energy of hot deformation was determined by the Arrhenius model to fit the true stress-strain curve of 25Cr2Ni4MoV steel, and the constitutive equation of 25Cr2Ni4MoV steel  was established. Thus, the research results can guide the numerical simulation and process design of super large low pressure integral rotor.

Funds:
工业和信息化部-工业强基工程“超大型构件先进成形、焊接及加工制造工艺” (TC160A310)
AuthorIntro:
叶丽燕(1987-),女,博士研究生,工程师,E-mail:yely@afdex.com.cn;通讯作者:蒋鹏(1964-),男,博士,博士生导师,E-mail:jp1964@163.com
Reference:


[1]谭立军,王峻乔,王庆群,等. 25Cr2Ni4MoV钢大型锻件的组织与力学性能
[J].金属热处理,2014,39(1):128-131.


Tan L J, Wang J Q, Wang Q Q, et al. Microstructure and mechanical properties of 25Cr2Ni4MoV steel large forgings
[J]. Heat Treatment of Metals,2014, 39(1): 128-131.



[2]李世键,孙明月,刘宏伟,等. 25Cr2Ni4MoV钢锻造过程孔洞缺陷愈合规律研究
[J].金属学报,2011,47(7):946-953.


Li S J, Sun M Y, Liu H W, et al. Study on void healing behavior during forging process for 25Cr2Ni4MoV steel
[J]. Acta Metallurgica Sinica,2011,47(7):946-953.



[3]王秋艳,冯庆莲,牛玉温. 25Cr2Ni4MoV钢辊轴锻后热处理工艺研究
[J].热处理技术与装备,2015,36(3):24-27.


Wang Q Y, Feng Q L,Niu Y W.Study on technology of heat treatment after forging for roll shaft of 25Cr2Ni4MoV steel
[J]. Heat Treatment Technology and Equipment, 2015, 36(3): 24-27.



[4]翟月雯. P91合金钢晶粒演化特征研究与厚壁管热挤压工艺数值模拟
[D]. 北京:机械科学研究总院,2013.


Zhai Y W. A Study on Grain Evolution Characteristics of P91 Steel and Numerical Simulation of Hot Extrusion of Thick Wall Tube
[D]. Beijing: China Academy of Machinery Science & Technology, 2013.



[5]张龙,王东城,马晓宝,等. 30Cr2Ni2Mo合金钢高温流变应力模型
[J].塑性工程学报,2017,24(4):144-150.


Zhang L, Wang D C, Ma X B, et al. Flow stress model of alloy steel 30Cr2Ni2Mo at high temperature
[J]. Journal of Plasticity Engineering, 2017, 24(4): 144-150.



[6]崔军辉, 杨合, 孙志超, 等. TC11钛合金流变行为及其应变分段本构模型
[J]. 稀有金属材料与工程, 2012, 41(3):397-401.


Cui J H, Yang H, Sun Z C, et al. Flow behavior and constitutive model using piecewise function of strain for TC11 Alloy
[J]. Rare Metal Materials and Engineering, 2012, 41(3):397-401.



[7]肖艳红,郭成. 30Cr钢高温变形流变应力模型
[J].锻压技术,2018,43(1):176-180.


Xiao Y H, Guo C. Flow stress model for steel 30Cr during hot deformation
[J]. Forging & Stamping Technology, 2018, 43(1): 176-180.



[8]Sellars C M, Mctegart W J . On the mechanism of hot deformation
[J]. Acta Metallurgica, 1966, 14(9):1136-1138.



[9]任树兰,刘建生,李景丹,等. 316LN钢 ESR 材料热变形行为及高温塑性本构方程
[J]. 锻压技术,2018,42(10): 162-169.


Ren S L, Liu J S, Li J D, et al. Thermal deformation behavior and high temperature plastic constitutive equation of ESR steel 316LN
[J]. Forging & Stamping Technology, 2018, 42(10): 162-169.



[10]欧玲,浦荣,曾方欣,等. 5A06 合金高温塑性变形行为
[J]. 锻压技术,2018,43(6): 123-128.


Ou L, Pu R, Zeng F X, et al. Plastic deformation behavior of alloy 5A06 at high temperature
[J]. Forging & Stamping Technology, 2018, 43(6): 123-128.



[11]李国城,邓涛,卢任之. 超高强度钢板热流变行为试验研究及本构模型仿真分析
[J]. 锻压技术,2018,41(3): 110-115.


Li G C, Deng T, Lu R Z. Experimental research on hot deformation behavior of ultra high strength steel and simulation analysis of the constitutive relationship
[J]. Forging & Stamping Technology, 2018, 41(3): 110-115.



[12]Zener C, Hollomon J H. Effect of strain rate upon the plastic flow of steel
[J]. Journal of Applied Physics, 1944, 15(1):22-27.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com