Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Numerical simulation and technology practice of castingforging integration liquid core forging for heavy ingot
Authors: Zhao Ziwen1 2  Cao Yanfei3  Qin Zhuo1 2  Sun Mingyue3  Liu Hongwei3  Li Dianzhong3  Wang Ya′an1 2  Wang Xuming1 2  Yang Desheng1 2  Song Daochun2 4 
Unit: 1. Lanzhou LS Energy Equipment Engineering Institute Co.  Ltd.  Lanzhou 730314  China  2. Gansu Engineering Research Center for Highend Forging and Casting  Lanzhou 730314  China  3. Shenyang National Laboratory for Materials Science  Institute of Metal Research  Chinese Academy of Sciences  Shenyang 110016 China  4. Lanzhou LS Casting and Forging Co.  Ltd.  Lanzhou 730314  China 
KeyWords: castingforging integration  ingot  liquid core forging  09MnNiD steel 
ClassificationCode:TG319
year,vol(issue):pagenumber:2019,44(5):21-28
Abstract:

 In order to improve the production efficiency of large forgings and reduce the production costs, the overall process including solidification and liquid core forging for a 19 t taper steel ingot was simulated by software THERCAST and FORGE for 09MnNiD steel, and the core rate and corresponding time nodes were predicted. Then, the manufacturing techniques for liquid core forging with largescale steel ingot weighted about 19 t were formulated based on simulation results, and the developed process was applied to the production practices. The practical results show that the integration of large ingot casting and forging is guided by the numerical simulation analysis to formulate the liquid core forging technology, and the technical level of traditional forgings is reached. Therefore, the mold time of ingot is reduced by more than 90%, the utilization rate of ingot is increased by 10%, and the average tonnage of steel saves more than 300 m3 of natural gas. Furthermore, the waste heat utilization is realized by the fine production organization, the accurate control of liquid core rate, the ultra high temperature heat transfer of ingot and the liquid core forging, and the heating time is reduced to improve the forging efficiency and increase the efficiency in the energy and material saving obviously.

Funds:
国家重点研发计划(2016YFB03004072);国家自然科学基金资助项目(51701225,U1508215,51774265);甘肃省科技计划资助项目(2015GS05896)
AuthorIntro:
作者简介:赵子文(1967-),男,硕士,高级工程师 Email:zgzhaoziwen@163.com 通讯作者:曹艳飞(1988-),男,博士,助理研究员 Email:〖WTBZ〗yfcaoios@imr.ac.cn[HJ]
Reference:

 
[1]郭会光. 我国大锻件制造业的发展
[J]. 大型铸锻件,2003,(99):42-45.


〖JP3〗Guo H G. The development of heavy forgings manufacturing industry in China
[J]. Heavy Casting and Forging, 2003, (99): 42-45.


[2]赵俊伟,陈学文,史宇麟,等. 大型锻件锻造工艺及缺陷控制技术的研究现状及发展趋势
[J]. 锻压装备与制造技术,2009,44(4):23-28.

Zhao J W, Chen X W, Shi Y L, et al. The current stage and development trend of forging technology and defect control for heavy forging
[J]. China Metal Forming Equipment & Manufacturing Technology, 2009,(4):23-28.


[3]郭会光. 大型锻件制造核心技术的进展
[J].金属加工:热加工,2012,(1):19-20.

Guo H G. Development of core technology of large forging manufacturing
[J]. Metal Working:Hot Working, 2012, (1):19-20.[ZK)]


[4]康豪伟. 热送热装技术在宝钢某热轧的应用
[J].冶金自动化,2018,(2):217.

Kang H W. Application of heat transfer and hot loading technology in hot rolling of Bao Steel
[J]. Metallurgical industry automation, 2018, (2):217.[ZK)]


[5]廖桑桑,韶华,赵敏森. 连铸坯热送热装生产工艺的实践
[J].河南冶金,2017,(3):39-42.

Liao S S, Shao H, Zhao M S.Hot transmission and hot charging process of continuous casting billet
[J]. Henan Metallurgy,2017,(3):39-42.[ZK)]


[6]汪永国,谷海容,霍俊,等. 热装热送工艺技术的生产实践
[J].安徽冶金,2016,(3):46-48.

Wang Y G, Gu H R, Huo J, et al. Production practice of hot-charging and hot-delivery process technology
[J].Anhui Metallurgy, 2016,(3):46-48.[ZK)]


[7]李殿中,孙明月,栾义坤,等. 一种钢锭超高温软芯锻造方法
[P].中国:CN105268884 A, 2016-01-27.

Li D Z, Sun M Y, Luan Y K, et al. A forging method of the softcore ingot at superhigh temperature
[P].China:CN105268884 A,2016-01-27.[ZK)]


[8]赵子文,牛立群,梁正龙,等. 钢锭铸锻一体化开坯工艺数值模拟
[J].锻压技术,2017,42(9):6-13.

Zhao Z W,Niu L Q,Liang Z L, et al. Numerical simulation of castingforging integrated breakdown process
[J].Forging & Stamping Technology,2017,42(9):6-13.[ZK)]


[9]桑宝光,张秀伟,康秀红,等. 大型钢锭凝固数值模拟与试验研究
[J].铸造,2010,59(3):276-279.

Sang B G, Zhang X W, Kang X H, et al. Solidification simulation and experimental investigation of heavy steel ingot
[J]. Foundry, 2010, 59(3):276-279.


[10]任运来,聂绍珉,陈颖. 大型锻件中疏松缺陷压实条件研究
[J].机械工程学报,2003,39(3):126-129.

Ren Y L, Nie S M, Chen Y. Study on porosity collapse factor of large forging
[J].Chinese Journal of Mechanical Engineering, 2003, 39(3): 126-129.


[11]郭淑娟,杨清凯. FM锻造法解决大型模块锻透问题的探索与实践
[J].热加工工艺,2012,41(5):124-125.

Guo S J, Yang Q K. Exploration and practice on large module forging penetration problem with FM forging method
[J]. Hot Working Technology, 2012, 41(5):124-125.


[12]李七平,潘强. 大型轴类锻件锻透压实技术的研究
[J].四川冶金,2018,40(4):56-60.

Li Q P, Pan Q. Forging compaction technology of large shaft forging
[J]. Sichuan Metallurgy,2018,40(4):56-60.[ZK)]


[13]王以华,吴振清,陈修琳,等. 型砧几何尺寸对大锻件锻造孔隙闭合的影响
[J]. 金属加工:热加工,2013,(1):22-25.

Wang Y H, Wu Z Q, Chen X L, et al. Effect of anvil geometric size on pore closure in forging of large forgings
[J]. Metal Working:Hot Working, 2013,(1):22-25.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com