[1]Mizumura M, Sato K, Suehiro M, et al. Development of new hydroforming methods [J]. Nippon Steel Technical Report, 2013,103 (3):39-46. [ZK)]
[2]KoM, Altan T. An overall review of the tube hydroforming (THF) technology [J]. Journal of Materials Processing Technology, 2001, 108(3):384-393.[ZK)]
[3]Rimkus W, Bauer H, Mihsein M J A. Design of loadcurves for hydroforming applications [J]. Journal of Materials Processing Technology, 2000, 108(1):97-105.
[4]Tonghai W, Sheng S, Dexiu M. The research of tube bulging using polyurethane under compound external forces and its application [J]. Adv. Technol. Plasticity, 1993, 33(12):494-499.
[5]AueULan Y, Ngaile G, Altan T. Optimizing tube hydroforming using process simulation and experimental verification [J]. Journal of Materials Processing Technology, 2004, 146(1):137-143.[ZK)]
[6]刘钢, 苑世剑, 王小松,等. 加载路径对内高压成形件壁厚分布影响分析 [J]. 材料科学与工艺, 2005, 13(2): 162-165.
Liu G, Yuan S J, Wang X S, et al. Effects of loading paths on thickness of a hydroforming component [J]. Materials Science & Technology, 2005, 13(2): 162-165.[ZK)]
[7]张伟玮, 韩聪, 苑世剑,等. 加载路径对扭力梁内高压成形壁厚分布和精度的影响 [J]. 材料科学与工艺, 2012, 20(4):1-6.
Zhang W W, Han C, Yuan S J, et al. Effect of loading paths on thickness distribution and precision of a hydroformed torsion beam [J]. Materials Science & Technology, 2012, 20(4):1-6.[ZK)]
[8]Jang H H, Lee Y, Park G J. Optimization of the loading path for the tubehydroforming process [J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2016, 230(12):1605-1623.[ZK)]
[9]宋学伟, 吴永飞, 沈传亮,等. 三通管内高压成形载荷路径试验优化设计 [J]. 吉林大学学报:工学版, 2012, 42(s1):57-61.
Song X W, Wu Y F, Shen C L, et al. Test optimum design in threeway pipe hydroforming load path optimization [J]. Journal of Jilin University:Engineering and Technology Edition, 2012, 42(s1):57-61.[ZK)]
[10]杨兵, 张卫刚, 林忠钦. 一种管件液压成形加载路径的设计方法 [J]. 上海交通大学学报, 2006, 40(6):893-897.
Yang B, Zhang W G, Lin Z Q. A method to design the loading path for tube hydroforming [J]. Journal of Shanghai Jiao Tong University, 2006, 40(6):893-897.[ZK)]
[11]王连东,张涛,李礽. 确定汽车桥壳液压胀形极限成形系数的初探 [J]. 燕山大学学报,2001, 25(3):202-208.
Wang L D, Zhang T, Li R. A study on determining limit coefficient of liquid bulging for automobile axle housings [J].Journal of Yanslian University, 2001, 25(3):202-208.[ZK)]
[12]王连东, 程文冬, 梁辰, 等. 汽车桥壳液压胀形极限成形系数及胀裂判据 [J]. 机械工程学报, 2007, 43(5): 210-213.
Wang L D, Cheng W D, Liang C, et al. Forming limit coefficient and bursting criterion of hydrobulging automobile axle housings [J].Chinese Journal of Mechanical Engineering, 2007, 43(5):210-213.[ZK)]
[13]王连东, 庞蒙, 周立凤,等. 中型卡车胀压成形桥壳预成形管坯的设计及成形分析 [J]. 中国机械工程学报, 2015, 26(12): 1684-1689.
Wang L D, Pang M, Zhou L F, et al. Preforming tube′s design and deformation analysis of mediumsized truck bulgingpressing axle housing [J].China Mechanical Engineering, 2015, 26(12):1684-1689.[ZK)]
[14]王连东, 徐永生, 陈旭静,等. 小型桥壳液压胀形初始变形条件分析及成形试验 [J]. 中国机械工程, 2016,27(3):398-402.
Wang L D, Xu Y S, Chen X J, et al. Analyses of initial deformation conditions for light hydroforming axle housing and forming experiment [J]. China Mechanical Engineering, 2016,27(3):398-402.
|