Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of initial microstructures on rheology stress behavior during hot deformation for Al-Cu-Mg-Zr alloy
Authors: Dong Zhaoyu Bo Guowei Fu Dingfa 
Unit: Hunan University 
KeyWords: Al-Cu-Mg-Zr alloy hot compression rheology stress constitutive equation dynamic softening rate 
ClassificationCode:TG146.21
year,vol(issue):pagenumber:2019,44(7):150-158
Abstract:

Combining industrial production, the heat treatment of Al-Cu-Mg-Zr alloy was carried out by air cooling, water quenching and furnace cooling to obtain different initial microstructures. Then, the isothermal hot compression experiments were performed on alloys with different initial microstructures under the deformation temperature of 300-450 ℃ and the strain rate of 0.01-10 s-1. The results show that the rheology stress rapidly reaches peak value and then softens into steady with the increasing of strain. In the three different heat treatment methods, the peak stress and dynamic softening rate of water quenching are the largest, and that of furnace cooling are the smallest. The rheology stress behavior of alloy can be described well by the hyperbolic sine equation, and the deformation activation energies of alloy under air cooling, water quenching and furnace cooling are 180.45, 298.92 and 161.45 kJ·mol-1, respectively. 

Funds:
国家自然科学基金资助项目(51674111)
AuthorIntro:
董兆宇(1993-),男,硕士研究生,E-mail:1119144306@qq.com;通讯作者:傅定发(1969-),男,博士,副教授,E-mail:hunu_fudingfa@163.com
Reference:

[1]Pantelakis S GAlexopoulos N D. Assessment of the ability of conventional and advanced wrought aluminum alloys for mechanical performance in light-weight applications [J]. Materials & Design2008291):80-91.


[2]Dursun TSoutis C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design2014, 564):862-871.


[3]左龙,汤杰,张辉.Zn含量对Al-Zn-Mg-Cu合金热变形流变应力行为的影响[J]. 锻压技术,2018435):120-125.


Zuo LTang JZhang H. Influence of Zn content on flow stress behavior in the hot deformation for Al-Zn-Mg-Cu alloys [J]. Forging & Stamping Technology2018435):120-125.


[4]Cepeda-Jiménez C MRuano O ACarsí Met al. Study of hot deformation of an Al-Cu-Mg alloy using processing maps and microstructural characterization[J]. Materials Science & Engineering A20125529):530-539.


[5]Banerjee SRobi P SSrinivasan Aet al. High temperature deformation behavior of Al-Cu-Mg alloys micro-alloyed with Sn[J]. Materials Science and Engineering A201052710):2498-2503.


[6]Li YLiu ZLin Let al. Deformation behavior of an Al-Cu-Mg-Mn-Zr alloy during hot compression[J]. Journal of Materials Science20114611):3708-3715.


[7]吴文祥,韩逸,钟皓,等. 2026铝合金热压缩变形流变应力行为[J]. 中国有色金属学报,2009198):1403-1408.


Wu W XHan YZhong Het al. Flow stress behavior of 2026 aluminum alloy during hot compression deformation[J]. The Chinese Journal of Nonferrous Metals2009198):1403-1408.


[8]Huang X DZhang HHan Yet al. Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature[J]. Materials Science and Engineering A20105273):485-490.


[9]Verlinden BWouters PMcQueen H Jet al. Effect of different homogenization treatments on the hot workability of aluminium alloy AA2024[J]. Materials Science and Engineering A19901232):229-237.


[10]Gavgali MAksakal B. Effects of various homogenisation treatments on the hot workability of ingot aluminium alloy AA2014[J]. Materials Science and Engineering A19982541):189-199.


[11]Ebrahimi G RZarei-Hanzaki AHaghshenas Met al. The effect of heat treatment on hot deformation behaviour of Al 2024[J]. Journal of Materials Processing Technology20082061):25-29.


[12]Totik YGavgali M. The effect of homogenization treatment on the hot workability between the surface and the center of AA2014 ingots[J]. Materials Characterization2002493):261-268.


[13]Ebrahimi G REzatpour H R. Effect of precipitation on the warm deformation behavior of AA2024 alloy[J]. Materials Science and Engineering A201768110-17.


[14]黄旭东. 2026铝合金热变形行为研究[D]. 长沙:湖南大学,2009.


Huang X D. Hot Deformation Behavior of 2026 Aluminum Alloy at Elevated Temperature [D]. ChangshaHunan University2009.


[15]Zhang X MSong MZhou Z Pet al. Microstructures and mechanical properties of 2014 aluminium alloy forgings made by a new process [J]. Transactions of Nonferrous Metals Society of China2000102):139-143.


[16]蒋福林. Al-Zn-Mg-Cu合金热/力作用下的静态软化:物理模拟与模型[D]. 长沙:湖南大学,2015.


Jiang F L. Static Softening of Al-Zn-Mg-Cu Alloy Following Thermal/Mechanical Processing: Physical Simulation and Modeling[D]. ChangshaHunan University, 2015.


[17]Jiang FZhang H. Non-isothermal precipitation kinetics and its effect on hot working behaviors of an Al-Zn-Mg-Cu alloy[J]. Journal of Materials Science2018534):2830-2843.


[18]陈容. 2026铝合金热变形过程中动态组织演变规律研究[D].长沙:湖南大学,2011.


Chen R. Research on Dynamic Microstructure Evolution of 2026 Aluminum Alloy during Hot Deformation[D]. ChangshaHunan University2011.


[19]Sellars C MMcTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica1966149):1136-1138.


[20]张辉,陈容,黄旭东,等. 2026铝合金热变形及热处理过程中的微观组织演变[J]. 中国有色金属学报:英文版,2011215):955-961.


Zhang HChen RHuang X Det al. Microstructural evolution of 2026 aluminum alloy during hot compression and subsequent heat treatment [J]. Transactions of Nonferrous Metals Society of China2011215):955-961.


[21]黄旭东,杨红,张辉,等. 2026铝合金热压缩变形流变行为研究[J]. 热加工工艺,20093814):20-24.


Huang X DYang HZhang Het al. Flow behavior of 2026 aluminum alloy during hot compression deformation [J].Thermal Processing Technology20093814):20-24.


[22]Zener CHollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics1944151):22-32.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com