[1]赵宏禹,刘荣佩,王长军,等. QLT与QT热处理工艺对9Ni低温钢性能的影响 [J].金属热处理, 2018, 43(12): 100-104.
Zhao H Y, Liu R P, Wang C J, et al. Effect of QLT and QT heat treatment process on properties of 9Ni low temperature steel [J]. Heat Treatment of Metals, 2018, 43 (12): 100-104.
[2]Saadatkia S, Mirzadeh H, Cabrera J M. Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels [J]. Materials Science and Engineering: A, 2015, 636(5): 196-202.
[3]董方,宿成,张寄东. Q345B结构钢的热压缩变形行为及流变应力模型 [J]. 钢铁,2011, 46(9):59-63.
Dong F, Su C, Zhang J D. Hot compression deformation behavior and rheological stress model of Q345B structural steel [J]. Iron and Steel, 2011, 46 (9): 59-63.
[4]张龙,王东城,马晓宝,等. 30Cr2Ni2Mo合金钢高温流变应力模型 [J]. 塑性工程学报, 2017,24(4): 144-149.
Zhang L, Wang D C, Ma X B, et al. High temperature rheological stress model of 30Cr2Ni2Mo alloy steel [J]. Journal of Plastic Engineering, 2017, 24 (4): 144-149.
[5]Yand J H, Liu Q Y, Sun D B. Recrystallization behavior of deformed austenite in high strength micro alloyed pipeline steel [J]. Journal of Iron and Steel Research: International, 2009, 16(1):70-80.
[6]She Y, Zhang Z H, Yang J, et al. The dynamic recrystallization of hot-deformed austenite in a micro-alloyed steel [J]. Materials Science Forum, 2012, 724(5):4-6.
[7]Hu C L, Zhang Y, Zhao Z, et al. Effect of processing parameters on the hot compressive deformation behavior of 20CrMnTiH [J]. Advanced Materials Research, 2011, 399-401:1693-1696.
[8]Kunitskaya I N, Spektor Y I, Olshanetskii V E. Structural and kinetic features of dynamic recrystallization of alloyed austenite upon multipass hot deformation [J]. Metal Science and Heat Treatment, 2012, 53(9-10):498-502.
[9]马世博,侯瑞东,张双杰,等.低碳合金钢高温本构方程及动态再结晶行为研究 [J]. 塑性工程学报, 2018, 25(4): 158-166.
Ma S B, Hou R D, Zhang S J, et al. Study on constitutive equation and dynamic recrystallization behavior of low carbon alloy steel at high temperature [J]. Journal of Plastic Engineering, 2018, 25 (4): 158-166.
[10]Li X, Song R B, Kang T, et al. Hot deformation and dynamic recrystallization behavior of Fe-8Mn-6Al-0.2C steel [J]. Materials Science Forum, 2017, 898(5):797-802.
[11]Gu S, Zhang L, Zhang C, et al. Modeling the effects of processing parameters on dynamic recrystallization behavior of deformed 38MnVS6 steel [J]. Journal of Materials Engineering and Performance, 2015, 24(5): 1790-1798.
[12]王伟, 马世博, 张双杰, 等. 20Cr2Ni4A钢高温变形行为及物理基参数本构模型 [J]. 塑性工程学报, 2018, 25(6): 147-153.
Wang W, Ma S B, Zhang S J, et al. Constitutive model of high temperature deformation behavior and physical basic parameters of 20Cr2Ni4A steel [J]. Journal of Plastic Engineering, 2018, 25 (6): 147-153.
[13]Xu L X, Wu H B, Wang X T. Influence of microstructural evolution on the hot deformation behavior of an Fe-Mn-Al duplex lightweight steel [J]. Acta Metallurgica Sinica: English Letters, 2018, 31(4):389-400.
[14]张静, 蒋春霞, 乔帮威. 14Cr17Ni2钢高温变形行为及本构方程的研究 [J]. 热加工工艺, 2018, 47(14): 38-43.
Zhang J, Jiang C X, Qiao B W. Study on high temperature deformation behavior and constitutive equation of 14Cr17Ni2 steel [J]. Hot Working Technology, 2018, 47 (14): 38-43.
[15]Dutta B, Palmiere E J, Sellars C M. Modelling the kinetics of strain induced precipitation in Nb micro alloyed steels [J]. Acta Materialia, 2001, 49(5): 785-794.
[16]Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low-density Fe-Mn-Al-C steel [J]. Acta Metallurgica Sinica: English Letters, 2016, 29(5):1-9.
|