Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:High temperature deformation behavior of low temperature steel for high strength building
Authors: Jiao Lijun  Zhang Shuna  He Yu  Luo Fengming 
Unit: 1.Department of Architecture and Civil Engineering  Xingtai Polytechnic College  2. Technology Center  HBIS Group Tang Steel Company 
KeyWords: low temperature steel  high temperature deformation  microstructure  constitutive equation  dynamic recrystallization 
ClassificationCode:TG454
year,vol(issue):pagenumber:2019,44(10):184-190
Abstract:
The hot compression deformation of steels used by low temperature and high strength building was conducted at 850-1200 ℃ by Gleeble 3800 thermal simulator, the evolution of high temperature structure and dynamic recrystallization behavior of low temperature steels were analyzed, and the constitutive equation of high temperature compression for low temperature steels was established. The results show that there is no obvious peak value of rheological stress in the stress-strain curves of low temperature steel at the deformation temperature of 850-1200 ℃. With the increase of deformation temperature, the rheological stress of low temperature steel under the same strain decreases gradually, and it has the characteristics of dynamic recovery rheological curve. However, with the increase of deformation temperature, the long austenite grains in low temperature steel gradually transform into fine equiaxed grains, and the coarsening and growth of 
equiaxed grains occur when the deformation temperature is higher than 1100 ℃. Therefore, the constitutive equation of high-temperature deformation for low temperature steels can be expressed as follows: Z=4exp(341970/RT)=7.8073σ7.9751p. Thus, with the increase of deformation temperature from 850 ℃ to 1000 ℃, the size of nano-V(C, N) phase in low temperature steel increases, the number of nano-V(C, N) phase decreases, and nano-V (C, N) phase can effectively inhibit the occurrence of dynamic recrystallization in low temperature steel.
Funds:
国家自然科学基金资助项目(51234012)
AuthorIntro:
作者简介:焦丽君(1986-),女,硕士,讲师 E-mail:lijunjiaoo48@sina.com
Reference:

 
[1]赵宏禹,刘荣佩,王长军,等. QLT与QT热处理工艺对9Ni低温钢性能的影响
[J].金属热处理, 2018, 43(12): 100-104.


 

Zhao H Y, Liu R P, Wang C J, et al. Effect of QLT and QT heat treatment process on properties of 9Ni low temperature steel
[J]. Heat Treatment of Metals, 2018, 43 (12): 100-104.

 


[2]Saadatkia S, Mirzadeh H, Cabrera J M. Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels
[J]. Materials Science and Engineering: A, 2015, 636(5): 196-202.

 


[3]董方,宿成,张寄东. Q345B结构钢的热压缩变形行为及流变应力模型
[J]. 钢铁,2011, 46(9):59-63.

 

Dong F, Su C, Zhang J D. Hot compression deformation behavior and rheological stress model of Q345B structural steel
[J]. Iron and Steel, 2011, 46 (9): 59-63.

 


[4]张龙,王东城,马晓宝,等. 30Cr2Ni2Mo合金钢高温流变应力模型
[J]. 塑性工程学报, 2017,24(4): 144-149.

 

Zhang L, Wang D C, Ma X B, et al. High temperature rheological stress model of 30Cr2Ni2Mo alloy steel
[J]. Journal of Plastic Engineering, 2017, 24 (4): 144-149.

 


[5]Yand J H, Liu Q Y, Sun D B. Recrystallization behavior of deformed austenite in high strength micro alloyed pipeline steel
[J]. Journal of Iron and Steel Research: International, 2009, 16(1):70-80.

 


[6]She Y, Zhang Z H, Yang J, et al. The dynamic recrystallization of hot-deformed austenite in a micro-alloyed steel
[J]. Materials Science Forum, 2012, 724(5):4-6.

 


[7]Hu C L, Zhang Y, Zhao Z, et al. Effect of processing parameters on the hot compressive deformation behavior of 20CrMnTiH
[J]. Advanced Materials Research, 2011, 399-401:1693-1696.

 


[8]Kunitskaya I N, Spektor Y I, Olshanetskii V E. Structural and kinetic features of dynamic recrystallization of alloyed austenite upon multipass hot deformation
[J]. Metal Science and Heat Treatment, 2012, 53(9-10):498-502.

 


[9]马世博,侯瑞东,张双杰,等.低碳合金钢高温本构方程及动态再结晶行为研究
[J]. 塑性工程学报, 2018, 25(4): 158-166.

 

Ma S B, Hou R D, Zhang S J, et al. Study on constitutive equation and dynamic recrystallization behavior of low carbon alloy steel at high temperature
[J]. Journal of Plastic Engineering, 2018, 25 (4): 158-166.

 


[10]Li X, Song R B, Kang T, et al. Hot deformation and dynamic recrystallization behavior of Fe-8Mn-6Al-0.2C steel
[J]. Materials Science Forum, 2017, 898(5):797-802.

 


[11]Gu S, Zhang L, Zhang C, et al. Modeling the effects of processing parameters on dynamic recrystallization behavior of deformed 38MnVS6 steel
[J]. Journal of Materials Engineering and Performance, 2015, 24(5): 1790-1798.

 


[12]王伟, 马世博, 张双杰, 等. 20Cr2Ni4A钢高温变形行为及物理基参数本构模型
[J]. 塑性工程学报, 2018, 25(6): 147-153.

 

Wang W, Ma S B, Zhang S J, et al. Constitutive model of high temperature deformation behavior and physical basic parameters of 20Cr2Ni4A steel
[J]. Journal of Plastic Engineering, 2018, 25 (6): 147-153.

 


[13]Xu L X, Wu H B, Wang X T. Influence of microstructural evolution on the hot deformation behavior of an Fe-Mn-Al duplex lightweight steel
[J]. Acta Metallurgica Sinica: English Letters, 2018, 31(4):389-400.

 


[14]张静, 蒋春霞, 乔帮威. 14Cr17Ni2钢高温变形行为及本构方程的研究
[J]. 热加工工艺, 2018, 47(14): 38-43.

 

Zhang J, Jiang C X, Qiao B W. Study on high temperature deformation behavior and constitutive equation of 14Cr17Ni2 steel
[J]. Hot Working Technology, 2018, 47 (14): 38-43.

 


[15]Dutta B, Palmiere E J, Sellars C M. Modelling the kinetics of strain induced precipitation in Nb micro alloyed steels
[J]. Acta Materialia, 2001, 49(5): 785-794.

 


[16]Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low-density Fe-Mn-Al-C steel
[J]. Acta Metallurgica Sinica: English Letters, 2016, 29(5):1-9.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com