Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence and optimization of forming process parameters on relative density of 316L stainless steel prepared by selective laser melting
Authors: Pan Lu  Zhang Chenglin  Jiang Hua Liu Tong  Wang Liang 
Unit: Anhui Technical College of Mechanical and Electrical Engineering Anhui Chungu 3D Printing Institute of Intelligent Equipment and Industrial TechnologyAnhui Chungu 3D Printing Institute of Intelligent Equipment and Industrial Technology  HIT-Chungu Joint Research Center for Additive Manufacturing Materials University of Science and Technology of China Anhui Top Additive Manufacturing Technology Co.  Ltd. 
KeyWords: selective laser melting  line energy density  relative density  bubble  porosity 
ClassificationCode:O436
year,vol(issue):pagenumber:2019,44(11):103-109
Abstract:
In order to improve the relative density of 316L stainless steel prepared by selective laser melting, the experiment was designed to optimize the main technological parameters (laser power and laser scanning speed) affecting the relative density, and the influences of laser power and laser scanning velocity on porosity, cracks and bubbles were analyzed by optical microscope and scanning electron microscope. Then, the influences of process parameters on the relative density were characterized comprehensively by introducing the linear energy density, and a predictive mathematical model of relative density of 316L stainless steel for desktop metal 3D printer was established. The results show that the laser power and laser scanning speed have a significant effect on the relative density of formed parts. When the linear energy density is 175-250 J·m-1, the relative density of formed parts for 316L stainless steel is over 99.95%, and when the laser power is 200 W and the laser scanning speed is 900 mm·s-1, the relative density is up to 99.98%.
Funds:
2019年安徽省高校自然科学研究重点项目(KJ2019A1157);2019年安徽省高校优秀拔尖人才培育资助项目(gxgnfx2019100);2019年哈工大-安徽春谷高端金属材料联合研发中心开放课题(HITCG2018100)
AuthorIntro:
潘露(1986-),男,硕士,讲师,E-mail:ahjdpanlu@126.com
Reference:
[1]张安峰, 李涤尘,梁少端, 等.高性能金属零件激光增材制造技术研究进展[J]. 航空制造技术, 2016, (22):16-22.
Zhang A F, Li D C, Liang S D, et al. Development of laser additive manufacturing of high-performance metal parts[J]. Aeronautical Manufacturing Technology, 2016, (22): 16-22.
[2]吴文恒,张亮, 何贝贝, 等. 选择性激光熔化增材制造工艺过程模拟现状[J]. 理化检验: 物理分册,2016, 52 (10):693-697.
Wu W H, Zhang L, He B B, et al. Current status of research on computer simulation of selective laser melting additive manufacturing process[J]. Physical Testing and Chemical Analysis Part A: Physical Testing, 2016, 52 (10): 693-697.
[3]王黎. 选择性激光熔化成形金属零件性能研究[D].武汉:华中科技大学,2012.
Wang L. Research on the Performance in Selective Laser Melting of Metallic Part[D]. Wuhan: Huazhong University of Science and Technology, 2012.
[4]王沛, 黄正华, 戚文军, 等. 基于SLM技术的3D打印工艺参数对316不锈钢组织缺陷的影响[J]. 机械制造文摘:焊接分册, 2016,(2): 2-7.
Wang P, Huang Z H, Qi W J, et al. Effect of the 3D printing process parameters based on SLM technology on the structural defect of 316 stainless steel [J]. Jixie Zhizao Wenzhai: Hanjie Fence, 2016, (2): 2-7.
[5]邹亚桐, 魏正英, 杜军, 等. AlSi10Mg激光选区熔化成形工艺参数对致密度的影响与优化[J]. 应用激光, 2016, 36(6): 656-662.
Zou Y T, Wei Z Y, Du J, et al. Effect and optimization of processing parameters on relative density of AlSi10Mg alloy parts by selective laser melting [J]. Applied Laser, 2016, 36 (6): 656- 662.
[6]潘露, 张成林, 王亮, 等. 基于选区激光熔化的316L不锈钢的裂纹形成规律及机理[J]. 激光与光电子学进展, 2019, 56(10): 187-193.
Pan L, Zhang C L, Wang L, et al. Crack formation law and mechanism in selective laser melting of 316L stainless steels [J]. Laser & Optoelectronics Progress, 2019, 56(10): 87-193.
[7]潘露,刘麒慧,王亮,等. 线能量密度对选区激光熔化制备316L不锈钢缺陷的影响[J]. 应用激光, 2019,39(1): 17-23.
Pan L, Liu Q H, Wang L, et al. Effect of linear energy density on defects of 316L stainless steel prepared by selective laser melting[J]. Applied laser, 2019, 39(1):17-23.
[8]王梦瑶,朱海红,祁婷, 等. 选区激光熔化成形Al-Si合金及其裂纹形成机制研究[J]. 激光技术, 2016, 40(2): 219-222.
Wang M Y, Zhu H H, Qi T, et al. Selective laser melting Al-Si aluminum alloy and the crack formation mechanism[J]. Laser Technology, 2016, 40(2):219-222.
[9]王迪.选区激光熔化成型不锈钢零件特性与工艺研究[D]. 广州:华南理工大学,2011.
Wang D. Study on the Fabrication Properties and Process of Stainless Steel Parts by Selective Laser Melting [D]. Guangzhou: South China University of Technology, 2011.
[10]李雅莉. 选区激光熔化AlSi10Mg温度场及应力场数值模拟研究[D]. 南京:南京航空航天大学,2015.
Li Y L. Numerical Investigation on Temperature Field and Stress Field during Selective Laser Melting of AlSi10Mg [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
[11]Rosenthal I, Stern A, Frage N. Strain rate sensitivity and fracture mechanism of AlSi10Mg parts produced by selective laser melting[J]. Materials Science and Engineering A, 2017, 682: 509-517.
[12]李瑞迪.金属粉末选择性激光熔化成形的关键基础问题研究[D]. 武汉:华中科技大学,2010.
Li R D. Research Progress of Key Basic Issue in Selective Laser Melting of Metallic Powder [D]. Wuhan: Huazhong University of Science and Technology, 2010.
[13]满达虎,王丽芳. 奥氏体不锈钢焊接热裂纹的成因及防止对策[J]. 热加工工艺, 2012,41(11): 181-184.
Man D H, Wang L F. Weld hot cracking causes and preventive measures of austenitic stainless steel[J]. Hot Working Technology, 2012, 41(11):181-184.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com