Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Multi-objective optimization on process parameters of power spinning for connecting rod bushing based on genetic algorithms
Authors: She Yong Zhan Gang Fan Wenxin Mao Weixiu Yu Shijie 
Unit: Guizhou Vocational Technology College of Electronics & Information Guizhou University North University of China 
KeyWords: power spinning  connecting rod bushing neural network  genetic algorithm  multi-objective optimization 
ClassificationCode:TG376
year,vol(issue):pagenumber:2019,44(12):187-191
Abstract:

 For the complex relationship between process parameters and mechanical property of connecting rod bushing formed by power spinning, the non-linear relationship of RBF neural network between process parameters (thinning rate, feeding ratio) and mechanical properties (tensile strength, elongation) was established, and the neural network was trained and tested by the results of orthogonal experiment. Then, comparing the measured values with the predicted values, it was found that the established neural network model had high prediction accuracy. Furthermore, this non-linear relationship was regarded as the fitness function, and the multi-objective optimization model (tensile strength, elongation) of the process parameters (thinning rate, feeding ratio) was established based on the genetic algorithm theory. Finally, the multi-objective Pareto optimal solution set was obtained, and the feasibility of the optimal solution set was verified by experimental analysis to effectively improve the design efficiency of process parameters and the mechanical properties of products.
 

Funds:
国家自然科学基金资助项目(51665007);贵州省经济和信息化委员会资助项目(2017GH063)
AuthorIntro:
佘勇(1990-),男,硕士,助教 E-mail:sy09020641@163.com 通讯作者:占刚(1979-),男,博士,教授 E-mail:zhangangbmw@163.com
Reference:


[1]卫原平,王轶为. 工艺参数对筒形件强力旋压过程的影响
[J]. 模具技术,2000,(4):12-16,73.


Wei Y P, Wang Y W. Influence of process parameters on the tube power spinning processes
[J]. Die and Mould Technology, 2000, (4): 12-16,73.



[2]李涛,樊文欣,王志伟,等. 强力旋压连杆衬套力学性能的试验研究
[J]. 热加工工艺,2014,43(3):44-46,49.


Li T, Fan W X, Wang Z W, et al. Experimental study on mechanical performance of power spinning connecting rod bushing
[J]. Hot Working Technology, 2014, 43(3): 44-46,49.



[3]陈魁. 试验设计与分析
[M]. 北京:清华大学出版社,2005.


Chen K. Test Design and Analysis
[M]. Beijing: Tsinghua University Press, 2005.



[4]马永杰,云文霞. 遗传算法研究进展
[J]. 计算机应用研

究,2012,29(4):1201-1206,1210.


Ma Y J, Yun W X. Research progress of genetic algorithm
[J]. Application Research of Computers, 2012, 29 (4): 1201-1206,1210.



[5]樊文欣,李 众,冯再新,等. 基于遗传算法的强力旋压成形工艺参数优化
[J]. 铸造技术,2017,38(11):2709-2712.


Fan W X, Li Z, Feng Z X, et al. Optimization of process parameters of power spinning based on genetic algorithms
[J]. Foundry Technology, 2017, 38(11): 2709-2712.


[6]吉梦雯,樊文欣,尹馨妍,等. 基于RBF神经网络的连杆衬套强力旋压轴线直线度预测
[J]. 锻压技术,2018,43(3):67-71.


Ji M W, Fan W X, Yin X Y, et al. Prediction on axial straightness of connecting rod bushing in the power spinning based on RBF neural network
[J]. Forging & Stamping Technology, 2018, 43(3): 67-71.



[7]王志伟. 强力旋压连杆衬套工艺参数对性能影响正交试验研究
[D]. 太原:中北大学,2014.


Wang Z W. Research on the Parameters Have an Effect on Performance of the Power Spinning Connecting Rod Bushing Based on Orthogonal Test
[D]. Taiyuan:North University of China, 2014.



[8]佘勇. 强力旋压连杆衬套力学性能预测研究及工艺参数优化
[D]. 太原:中北大学,2017.


She Y. Study on Mechanical Property Prediction and Process Parameter Optimization of Power Spinning Connecting Rod Bushing
[D]. Taiyuan:North University of China, 2017.



[9]张远绪,程换新,宋生建. 基于改进的RBF神经网络的滚动轴承故障诊断
[J]. 工业仪表与自动化装置,2018,(6):31-34.


Zhang Y X, Cheng H X, Song S J. Fault diagnosis of rolling bearing based on improved RBF neural network
[J].Industrial Instrumentation & Automation, 2018,(6): 31-34.



[10]公茂果,焦李成,杨咚咚,等. 进化多目标优化算法研究
[J]. 软件学报,2009,20(2):271-289.


Gong M G, Jiao L C, Yang D D,et al. Research on evolutionary multi-objective optimization algorithms
[J]. Journal of Software, 2009, 20(2): 271-289.



[11]段少军. 基于遗传算法的LVDT性能参数多目标优化
[D]. 武汉:武汉科技大学,2016.


Duan S J. Multi-objective Optimization on Performance Parameters of LVDT Based on Genetic Algorithm
[D]. Wuhan:Wuhan University of Science and Technology, 2016.



[12]李涛. 强力旋压连杆衬套本构关系试验与建模研究
[D]. 太原:中北大学,2014.


Li T. Research on the Model and Experiment of Constitution Relation of Connecting Rod Bushing Formed by Power Spinning
[D]. Taiyuan:North University of China, 2014.

 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com