[1]卫原平,王轶为. 工艺参数对筒形件强力旋压过程的影响 [J]. 模具技术,2000,(4):12-16,73.
Wei Y P, Wang Y W. Influence of process parameters on the tube power spinning processes [J]. Die and Mould Technology, 2000, (4): 12-16,73.
[2]李涛,樊文欣,王志伟,等. 强力旋压连杆衬套力学性能的试验研究 [J]. 热加工工艺,2014,43(3):44-46,49.
Li T, Fan W X, Wang Z W, et al. Experimental study on mechanical performance of power spinning connecting rod bushing [J]. Hot Working Technology, 2014, 43(3): 44-46,49.
[3]陈魁. 试验设计与分析 [M]. 北京:清华大学出版社,2005.
Chen K. Test Design and Analysis [M]. Beijing: Tsinghua University Press, 2005.
[4]马永杰,云文霞. 遗传算法研究进展 [J]. 计算机应用研
究,2012,29(4):1201-1206,1210.
Ma Y J, Yun W X. Research progress of genetic algorithm [J]. Application Research of Computers, 2012, 29 (4): 1201-1206,1210.
[5]樊文欣,李 众,冯再新,等. 基于遗传算法的强力旋压成形工艺参数优化 [J]. 铸造技术,2017,38(11):2709-2712.
Fan W X, Li Z, Feng Z X, et al. Optimization of process parameters of power spinning based on genetic algorithms [J]. Foundry Technology, 2017, 38(11): 2709-2712.
[6]吉梦雯,樊文欣,尹馨妍,等. 基于RBF神经网络的连杆衬套强力旋压轴线直线度预测 [J]. 锻压技术,2018,43(3):67-71.
Ji M W, Fan W X, Yin X Y, et al. Prediction on axial straightness of connecting rod bushing in the power spinning based on RBF neural network [J]. Forging & Stamping Technology, 2018, 43(3): 67-71.
[7]王志伟. 强力旋压连杆衬套工艺参数对性能影响正交试验研究 [D]. 太原:中北大学,2014.
Wang Z W. Research on the Parameters Have an Effect on Performance of the Power Spinning Connecting Rod Bushing Based on Orthogonal Test [D]. Taiyuan:North University of China, 2014.
[8]佘勇. 强力旋压连杆衬套力学性能预测研究及工艺参数优化 [D]. 太原:中北大学,2017.
She Y. Study on Mechanical Property Prediction and Process Parameter Optimization of Power Spinning Connecting Rod Bushing [D]. Taiyuan:North University of China, 2017.
[9]张远绪,程换新,宋生建. 基于改进的RBF神经网络的滚动轴承故障诊断 [J]. 工业仪表与自动化装置,2018,(6):31-34.
Zhang Y X, Cheng H X, Song S J. Fault diagnosis of rolling bearing based on improved RBF neural network [J].Industrial Instrumentation & Automation, 2018,(6): 31-34.
[10]公茂果,焦李成,杨咚咚,等. 进化多目标优化算法研究 [J]. 软件学报,2009,20(2):271-289.
Gong M G, Jiao L C, Yang D D,et al. Research on evolutionary multi-objective optimization algorithms [J]. Journal of Software, 2009, 20(2): 271-289.
[11]段少军. 基于遗传算法的LVDT性能参数多目标优化 [D]. 武汉:武汉科技大学,2016.
Duan S J. Multi-objective Optimization on Performance Parameters of LVDT Based on Genetic Algorithm [D]. Wuhan:Wuhan University of Science and Technology, 2016.
[12]李涛. 强力旋压连杆衬套本构关系试验与建模研究 [D]. 太原:中北大学,2014.
Li T. Research on the Model and Experiment of Constitution Relation of Connecting Rod Bushing Formed by Power Spinning [D]. Taiyuan:North University of China, 2014.
|