Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Wear analysis and parameter optimization in blanking forming for nut based on orthogonal experiment
Authors: Chen Ting 
Unit: Hubei Communications Technical College 
KeyWords: blanking  cold heading  die wear  orthogonal experiment Archard wear theory 
ClassificationCode:TG375
year,vol(issue):pagenumber:2020,45(3):141-145
Abstract:

Taking the blanking die of cold heading for vehicle-used nut as object, the wear of upper punch was simulated and analyzed by finite element analysis software DEFORM-3D based on Archard wear theory. The results shows that the wear of upper punch mainly occurs in cutting edge region with high loading in forming process. Therefore, in order to extend the life of die, the blanking gap, the blanking speed, the surface hardness of upper punch and the friction coefficient were selected as facters, and the orthogonal experiment was designed to reduce the wear of upper punch. Then, the results were analyzed by using range and variance. Finally, the sequence of influencing factors is blanking speed, blanking gap, surface hardness of punch, friction coefficient respectively. The optimal parameters were obtained as the blanking gap of 8%t, the blanking speed of 5 mm·s-1, the  surface hardness of upper punch of 53 HRC, the friction coefficient of 0.14. Thus, the maximum wear depth of upper punch is reduce from 13.1×10-6 mm to 3.66×10-6 mm, and it is a good guidance for practical production in enterprises.
 

Funds:
校企联合项目(J2018-181)
AuthorIntro:
陈庭(1981-),男,硕士,讲师 E-mail:1677239928@qq.com
Reference:


[1]郭鸣骥. 多工位级进模模具母体结构优化设计关键技术研究
[D].广州:华南理工大学,2015.


Guo M J. Research on Key Technologies of Structure Optimization of Die Base for Multi-position Progressive die
[D]. Guangzhou: South China University of Technology, 2015.



[2]陈丽霞. 高强钢热冲切模具的磨损研究
[D].哈尔滨:哈尔滨工业大学,2018.


Chen L X. Research on Wear Resistance Characteristics of Hot Blanking Dies for High Strength Steels
[D]. Harbin:Harbin Institute of Technology, 2018.



[3]孙静. 板料冲裁工艺参数优化与仿真预测的研究
[D].天津:天津大学,2017.


Sun J. Research on Optimization and Simulation Prediction of Blanking Process Parameter for Sheet Metal
[D]. Tianjin:Tianjin University, 2017.



[4]王培安, 吴淑芳, 苗润忠,等. 基于正交试验的活塞销挤压成形工艺研究及模具磨损分析
[J]. 铸造技术, 2018,39(3):715-719,722.


Wang P A, Wu S F, Miao R Z,et al. Research on piston pin extrusion process based on orthogonal test and analysis of mold wear
[J]. Foundry Technology, 2018,39(3):715-719,722.



[5]谢政龙,张庆.基于Deform-3D的冷挤压旋转模设计与磨损分析
[J].机械制造,2017,55(11):77-79,98.


Xie Z L, Zhang Q. Design and wear analysis of cold extrusion rotary die based on Deform-3D
[J]. Machinery, 2017,55(11):77-79,98.



[6]洪永放,庄新村,丁振文,等.不同挤压次数下板料挤压凸模磨损规律研究
[J].塑性工程学报,2018,25(5):130-135.


Hong Y F, Zhuang X C, Ding Z W, et al. Tool wear investigation of sheet extrusion based on continuous extrusion strokes
[J]. Journal of Plasticity Engineering,2018,25(5):130-135.



[7]史双喜, 李福涛. 基于Deform的精冲模具磨损特性研究
[J]. 润滑与密封,2015,40(7):89-92.


Shi S X, Li F T. Research on fine blanking die wear based on Deform
[J]. Lubrication Engineering, 2015,40(7):89-92.



[8]周杰, 赵军, 安治国. 热挤压模磨损规律及磨损对模具寿命的影响
[J]. 中国机械工程,2007,18(17):2112-2115.


Zhou J, Zhao J, An Z G. Wear rule and effects on the die service life during hot extrusion
[J]. China Mechanical Engineering, 2007,18(17):2112-2115.



[9]朱红亮,陈学文,王广欣,等.基于正交试验的LED散热器冷锻成形工艺参数优化
[J].锻压技术,2019,44(11):10-17.


Zhu H L, Chen X Y, Wang G X, et al. Optimization on cold forging process parameters for LED radiator based on orthogonal experiment
[J]. Forging & Stamping Technology,2019,44(11):10-17.



[10]孙宪萍, 刘强强, 杨兵,等. 基于磨损正交试验的温挤压模具优化设计
[J]. 润滑与密封, 2016, 41(6):73-76.




Sun X P, Liu Q Q, Yang B, et al. Optimization design on warm extrusion die based on orthogonal experiments of wear
[J]. Lubrication Engineering,2016, 41(6):73-76.



[11]王相钧,王大勇,王培涛,等.连接杆头模锻工艺参数优化研究
[J].塑性工程学报,2019,26(6):36-41.


Wang X Y, Wang D Y, Wang P T, et al. Process parameters optimization of die forging for connecting rod head
[J]. Journal of Plasticity Engineering,2019,26(6):36-41.



[12]宋宇,张丰收,皇涛,等.基于高温磨损的H13热作模具钢磨损规律和模型研究
[J].塑性工程学报,2018,25(4):187-193.


Song Y, Zhang F S, Huang T, et al. Study on wear law and model of H13 hot working die steel based on high-temperature wear
[J]. Journal of Plasticity Engineering,2018,25(4):187-193.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com