Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Electro-hydraulic position synchronization control algorithm on integral separation PID neural network
Authors: Song Zhao  Liu Zhenzhou  Shi Mingli  Huang Qingzhao 
Unit: Mingyang Smart Energy Group Limited 
KeyWords: servo system  position synchronization  integral separation  PID neural network  synchronization precision 
ClassificationCode:TH137
year,vol(issue):pagenumber:2020,45(5):167-170
Abstract:
For the problems of poor tracking performance, slow dynamic response and low synchronization control precision caused by nonlinear and time-varying in the electro-hydraulic position synchronization control system of metal processing and forming equipment, taking the valve controlled asymmetric cylinder system as the researching object, the double-cylinder position synchronization control model was established based on the working principle of electro-hydraulic servo system, and the control algorithm of integral separation PID neural network after feedforward correction was proposed. Then, the double-cylinder position synchronization controller was designed, and its simulation analysis was conducted. The simulation result indicates that using this method restrains the interference effectively such as load changes, ambient temperature changes and non-linearity of hydraulic components during the equipment operation, and the double-cylinder position synchronization error is controlled within 0.1 mm. In addition, the system shows good dynamic tracking performance and short adjustment time to improve the shortcomings of traditional control method.
Funds:
AuthorIntro:
宋昭(1988-), 男, 硕士, 工程师,E-mail:song_zhao@126.com
Reference:
[1]张洪坤. 液压伺服同步控制技术在模压式预弯机中的应用[D].秦皇岛:燕山大学, 2017.
Zhang H K. Hydraulic Servo Synchronous Control Technology in the Application of the Molded Prebending Machine [D]. Qin-huangdao: Yanshan University, 2017.
[2]许文斌, 谭建平, 曾全胜. 伺服液压系统负载敏感位置跟踪控制 [J].锻压技术,2018, 43(11): 99-104.
Xu W B, Tan J P, Zeng Q S. Position tracking control on loadsensing for servo hydraulic system [J].Forging & Stamping Technology, 2018, 43(11):99-104.
[3]王立新, 赵丁选, 刘福才, 等. 电液比例位置同步线性自抗扰控制[J]. 控制理论与应用, 2018, 35(11):1618-1625.
Wang L X, Zhao D X, Liu F C, et al. Linear active disturbance rejection control for electrohydraulic proportional position synchronous [J]. Control Theory & Applications, 2018, 35(11):1618-1625.
[4]汪飞雪, 薛雄伟,曹晓明,等. 双缸液压同步控制系统建模及仿真[J].锻压技术,2018,43(9):113-118.
Wang F X,Xue X W,Cao X M,et al. Modeling and simulating on hydraulic synchronization control system with double cylinders [J]. Forging & Stamping Technology,2018, 43(9):113-118.
[5]杨静. 板料折弯机电液比例位置同步控制系统的设计与分析 [D]. 天津:天津理工大学,2017.
Yang J. Design and Analysis of the Synchronous Control System of Electro Hydraulic Proportional Position of Sheet Metal [D]. Tianjin: Tianjin University of Technology, 2017.
[6]Ji Y D, Liu D Y, Guo Y P. Adaptive neural network based position tracking control for dualmaster/singleslave teleoperation system under communication constant time delays [J]. ISA Transactions, 2019, 93: 80-92.
[7]王春行. 液压控制系统 [M]. 北京: 机械工业出版社, 1995.
Wang C X. Hydraulic Control System [M]. Beijing: China Machine Press, 1995.
[8]邓飚, 苏文斌, 郭秦阳. 双缸电液位置伺服同步控制系统的智能控制 [J]. 西安交通大学学报, 2011, 45(11):85-90.
Deng B, Su W B, Guo Q Y. Intelligent control for electrohydraulic position servo synchronic control system with double cylinders [J]. Journal of Xi′an Jiaotong University, 2011, 45(11):85-90.
[9]李宜伦, 王胜辉, 郑洪, 等. 积分分离模糊PID算法在MPPT中的应用 [J]. 东北电力技术, 2018, 39(8):1-6.
Li Y L, Wang S H, Zheng H, et al. Application of integral separation fuzzy PID algorithm in MPPT [J]. Northeast Electric Power Technology, 2018, 39(8):1-6.
[10]冯勇. 现代计算机控制系统 [M]. 哈尔滨: 哈尔滨工业大学出版社,1996.
Feng Y. Modern Computer Control System [M]. Harbin: Harbin Industrial University Press, 1996.
[11]舒怀林. PID神经元网络及其控制系统 [M]. 北京:国防工业出版社, 2006.
Shu H L. PID Neural Network and Its Control System [M]. Beijing: National Defense Industry Press, 2006.
[12]赵垒. 基于单神经元的船舶航向保持自适应PID控制[D]. 广州: 华南理工大学, 2018.
Zhao L. Ship Coursekeeping Adaptive PID Control Based on Single Neuron [D]. Guangzhou: South China University of Technology, 2018.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com