Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Optimization on hot rolling load distribution by particle swarm optimization algorithm with constriction factor
Authors: Zhang Hanwen  Zhong Zhaozhun  Huang Hu 
Unit: Soochow University Jiangsu Shagang Group Co.  Ltd. 
KeyWords: hot rolled strip steel  load distribution  particle swarm optimization algorithm  constriction factor  convergence accuracy convergence speed 
ClassificationCode:TP18
year,vol(issue):pagenumber:2020,45(6):194-199
Abstract:

In order to improve the quality of hot rolled strip steel and the efficiency of production in actual production, the load distribution model that took into account both load balance and optimal sheet shape was established, and the load was preliminarily distributed by the traditional empirical method. Then, the constriction factor was introduced into the basic particle swarm optimization (PSO) algorithm, and the particle swarm optimization algorithm with constriction factor was proposed to optimize the initial distribution results. The results show that compared with the basic PSO algorithm, the introduction of constriction factor effectively controls the particle flight speed, improves the local search ability of PSO algorithm, and enhances the convergence accuracy and speed of the algorithm. The function test result shows that the PSO algorithm with the constriction factor has the best accuracy among the three types of benchmark functions. Furthermore, the simulation results of load distribution show that the above algorithm meets the requirements of rolling force and relative convexity very well and shows the superiority and effectiveness of PSO algorithm with constriction factor.

Funds:
国家自然科学基金资助项目(61304095)
AuthorIntro:
张汉文(1994-),男,硕士研究生 E-mail:535171586@qq.com 通讯作者:仲兆准(1980-),男,博士,副教授 E-mail:nustzzz@163.com
Reference:


[1]姬亚锋. 基于负荷平衡的监控AGC在热连轧中的应用
[J]. 中国冶金, 2014, 24(2):36-39.


Ji Y F. Algorithm design and application of monitor AGC based on load balance
[J]. China Metallurgy, 2014, 24(2):36-39.



[2]李维刚, 刘超, 卞皓,等. 热连轧机负荷分配优化计算策略
[J]. 钢铁研究学报, 2017,29(5): 391-396.


Li W G, Liu C, Bian H, et al. Optimization calculation strategy of load distribution for hot strip mills
[J]. Journal of Iron and Steel Research, 2017,29(5): 391-396.



[3]谷向磊, 黄长清, 蔡央, 等. 智能算法优化轧制规程的优缺点及发展趋势
[J]. 热加工工艺, 2018,47(21): 1-6.


Gu X L, Huang C Q, Cai Y, et al. Advantages and disadvantages of intelligent algorithm for optimizing rolling schedule and its development trend
[J]. Hot Working Technology, 2018,47(21): 1-6.



[4]王焱, 刘景录, 孙一康. 免疫遗传算法对精轧机组负荷分配的优化
[J]. 北京科技大学学报, 2002, 24(3): 339-341.


Wang Y, Liu J L, Sun Y K. Immune genetic algorithms(IGA)based scheduling optimization for finisher
[J]. Journal of University of Science and Technology Beijing, 2002, 24(3): 339-341.



[5]林伟路, 丁小凤, 双远华. BP神经网络对斜轧穿孔轧制力的预测
[J]. 锻压技术, 2018, 43(10):175-178.


Lin W L, Ding X F, Shuang Y H. Prediction on rolling force of oblique rolling piercing based on BP neural network
[J]. Forging & Stamping Technology, 2018, 43(10):175-178.



[6]张良. 基于BP神经网络的预切冲裁断面质量的仿真预测
[J]. 锻压技术, 2018, 43(12):175-179.


Zhang L. Simulation and prediction of cross-section quality for pre-cut blanking based on BP neural network
[J]. Forging & Stamping Technology, 2018, 43(12):175-179.



[7]高蕾, 庞玉华, 孙列, 等. 热连轧精轧带钢厚度预报模型优化研究
[J]. 热加工工艺, 2013, 42(11): 92-95.


Gao L, Pang Y H, Sun L, et al. Optimization of prediction model of thickness in hot continuous precise rolling strip steel
[J]. Hot Working Technology, 2013, 42(11): 92-95.



[8]Hai-Jun L I, Jian-Zhong X U, Wang G D, et al. Improvement on conventional load distribution algorithm in hot tandem mills
[J]. Journal of Iron and Steel Research International, 2007, 14(2): 36-41.



[9]张进之. 热连轧机负荷分配方法的分析和综述
[J]. 宽厚板, 2004, 10(3): 14-21.


Zhang J Z. Analysis and summarization of load distribution method for hot continuous rolling mill
[J]. Wide and Heavy Plate, 2004, 10(3): 14-21.



[10]姚峰, 杨卫东, 张明. 改进粒子群算法及其在热连轧负荷分配中的应用
[J]. 北京科技大学学报, 2009, 31(8): 1061-1066.


Yao F, Yang W D, Zhang M. Improved PSO and its application to load distribution optimization of hot strip mills
[J]. Journal of University of Science and Technology Beijing, 2009, 31(8): 1061-1066.



[11]李荣雨, 张卫杰, 周志勇. 改进的粒子群算法在轧制负荷分配中的优化
[J]. 计算机科学, 2018, 45(7): 220-224,231.


Li R Y, Zhang W J, Zhou Z Y. Improved PSO algorithm and its load distribution of hot strip mills
[J]. Computer Science, 2018, 45(7): 220-224,231.



[12]徐双. 混合粒子群算法在板带热连轧负荷分配中的应用研究
[D]. 北京:冶金自动化研究设计院, 2018.


Xu S. Research and Application of Hybrid Particle Swarm Optimization Algorithm in Load Distribution for Tandem Hot Metal Strip Rolling
[D]. Beijing:Automation Research and Design Institute of Metallurgical Industry, 2018.



[13]贾树晋. 热轧生产计划与负荷分配的多目标群智能算法研究
[D]. 上海:上海交通大学, 2012.


Jia S J. Research on Multi-objective Swarm Intelligence Algorithm for Hot Rolling Production Planning and Load Distribution
[D]. Shanghai:Shanghai Jiao Tong University,2012.



[14]Eberhart R C. Comparing inertia weights and constriction factors in particle swarm optimization
[A]. Proceedings of the 2000 IEEE Congress on Evolutionary Computation
[C]. La Jolla, CA:IEEE, 2000.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com