Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of vibration assisted bending on residual stress
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG306
year,vol(issue):pagenumber:2020,45(10):27-34
Abstract:

 In order to reduce residual stress, the traditional process often uses the method of forming first and then vibration aging. Now, the low frequency vibration is applied to the forming process to shorten the manufacturing process flow and obtain stamping parts with low residual stress. Therefore, the vibration assisted bending experiment of 6082 aluminum plate was carried out by high-precision servo press, and three variables of amplitude, frequency and depression rate were set up. Then, the residual stress on the curved arc surface of sample after vibration assisted bending was measured, and the average misorientation at the inner curved surface was characterized by EBSD and the average dislocation density of the curved arc section was measured by XRD to obtain the influence laws of different vibration parameters on residual stress and dislocation density. The results show that vibration assisted forming effectively reduces the residual stress up to 36.96%, and the residual stress decreases first and then increases with the increasing of amplitude, increases first and then remains unchanged with the increasing of frequency, and increases with the increasing of depression rate. Finally, through the simulation and analysis of low frequency vibration assisted bending process, combined with the dislocation related theory, the micro-mechanism of vibration assisted forming affecting residual stress is explained. 

 
Funds:
国家自然科学基金资助项目(51725504);中央高校基本科研业务费专项资金资助(2018KFYYXJJ027)
AuthorIntro:
王宇飞(1995-),男,硕士研究生 E-mail:wyf_dream@hust.edu.cn 通讯作者:邓磊(1982-),男,博士,副教授 E-mail:denglei@hust.edu.cn
Reference:

 
[1]沈华龙, 吴运新,郭俊康. 高强度铝合金厚板振动时效工艺的研究
[J]. 振动与冲击, 2009, 28(8): 191-194.


Shen H L, Wu Y X, Guo J K. VSR technology used in high intensity aluminum alloy thick plates
[J]. Journal of Vibration and Shock, 2009, 28(8): 191-194.


[2]陶春, 袁海洋,胡永会. 振动时效在低合金高强钢焊接板中的应用
[J]. 热加工工艺, 2012, 41(15): 208-209.

Tao C, Yuan H Y, Hu Y H. Application of VSR in welded sheet of lowalloy highstrength steel
[J]. Hot Working Technology, 2012, 41(15): 208-209.


[3]廖凯, 吴运新,郭俊康. 振动时效在铝合金厚板应力消减中的局限与应用
[J]. 振动与冲击, 2012, 31(14): 70-73.

Liao K,Wu Y X,Guo J K.Application of VSR technique in stress reduction of aluminum alloy thick plate and its limitation
[J]. Journal of Vibration and Shock,2012,31 (14): 70-73.


[4]陈恒, 卢琳. 残余应力对金属材料局部腐蚀行为的影响
[J]. 工程科学学报, 2019, 41(7): 929-939.

Chen H, Lu L. Effect of residual stress on localized corrosion behavior of metallic materials
[J]. Chinese Journal of Engineering, 2019, 41(7): 929-939.


[5]Shen Z, Arioka K, LozanoPerez S. A mechanistic study of SCC in Alloy 600 through highresolution characterization
[J]. Corrosion Science, 2018, 132: 244-259.


[6]Alvarez M G, Lapitz P, Ruzzante J. Analysis of acoustic emission signals generated from SCC propagation
[J]. Corrosion Science, 2012, 55: 5-9.


[7]Zhou N, Pettersson R, Lin Peng R, et al. Effect of surface grinding on chloride induced SCC of 304L
[J]. Materials Science and Engineering: A, 2016, 658: 50-59.


[8]Masuda H. SKFM observation of SCC on SUS304 stainless steel
[J]. Corrosion Science, 2007, 49(1): 120-129.


[9]廖凯, 熊冠华,朱家豪,等. 振动时效对7075铝合金薄壁构件应力松弛的影响与分析
[J]. 振动与冲击, 2019, 38(1): 265-270.

Liao K, Xiong G H, Zhu J H, et al. Effects of vibratory stress relief on stress relaxation of 7075 Al alloy thinwalled components
[J]. Journal of Vibration and Shock, 2019, 38(1): 265-270.


[10]刘晓丹, 陶兴华,韩振强. 振动时效工艺在消除膨胀波纹管残余应力中的应用
[J]. 振动与冲击, 2015, 34(4): 171-174.

Liu X D, Tao X H, Han Z Q. Application of vibratory stress relief in relaxation of residual stress for expandable corrugated liners
[J]. Journal of Vibration and Shock, 2015, 34(4): 171-174.


[11]王哲, 李新和,刘舜尧,等. 超声振动对材料流变行为的影响机制
[J]. 塑性工程学报, 2012, 19(2): 38-42.

Wang Z, Li X H, Liu S Y, et al. Influence principle of ultrasonic vibration on the rheological behavior of materials
[J]. Journal of Plasticity Engineering, 2012, 19(2): 38-42.


[12]刘艳雄, 华林. 高强度超声波辅助塑性加工成形研究进展
[J]. 塑性工程学报, 2015, 22(4): 8-14.

Liu Y X, Hua L. Review of study on highintensity ultrasonic vibrations assisted plastic deformation process
[J]. Journal of Plasticity Engineering, 2015, 22(4): 8-14.


[13]王仕全. 轻合金的高频振动辅助冲裁研究
[D]. 重庆:重庆大学, 2011.

Wang S Q. Study on Deformation of Light Alloy Blanking Superposed High Frequency Vibration
[D]. Chongqing:Chongqing University, 2011.


[14]Meng D A, Zhao X, Zhao S, et al. Effects of vibration direction on the mechanical behavior and microstructure of a metal sheet undergoing vibrationassisted uniaxial tension
[J]. Materials Science and Engineering: A, 2019, 743: 472-481.


[15]Deng L, Li P, Wang X, et al. Influence of lowfrequency vibrations on the compression behavior and microstructure of T2 copper
[J]. Materials Science and Engineering: A, 2018, 710: 129-135.


[16]刘成清, 李俊君,雷拓,等. 塑性阶段卸载后的残余应力理论计算及数值模拟: 城市地下空间综合开发技术交流会
[Z]. 上海:2011.

Liu C Q, Li J J, Lei T, et al. Theoretical calculation and numerical simulation on residual stress after unloading in the plastic phase
[Z]. Shanghai:2011.


[17]Shintani T, Murata Y. Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of Xray diffraction
[J]. Acta Materialia, 2011, 59(11): 4314-4322.


[18]顾邦平, 胡雄,徐冠华,等. 基于位错密度演化的高频振动时效微观机理
[J]. 稀有金属材料与工程, 2018,(8): 2477-2482.

Gu B P, Hu X, Xu G H, et al. Microscopic mechanism of high frequency vibration aging based on dislocation density evolution
[J]. Rare Metal Materials and Engineering, 2018,(8): 2477-2482.


[19]Williamson G K, Smallman R E. Dislocation densities in some annealed and coldworked metals from measurements on the Xray debyescherrer spectrum
[J]. Philosophical Magazine, 1956,1(1), 34-46.


[20]徐野, 韩晓辉, 叶结和, 等. 高速列车铝合金车体超声波冲击消除焊接残余应力方法研究
[J]. 电焊机, 2018, 48(3):65-71.

Xu Y, Han X H, Ye J H, et al. Research on welding residual stress elimination of aluminum alloy body of highspeed trains by means of ultrasonic impact treatment
[J]. Electric Welding Machine, 2018, 48(3):65-71.


[21]许擎栋, 李克俭,蔡志鹏,等. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究
[J]. 金属学报,2019,55(4):489-495.

Xu Q D, Li K J, Cai Z P, et al. Effect of pulsed magnetic field on the microstructure of TC4 titanium alloy and its mechanism
[J]. Acta Metallurgica Sinica, 2019,55(4):489-495.


[22]Siu K W, Ngan A H W, Jones I P. New insight on acoustoplasticityUltrasonic irradiation enhances subgrain formation during deformation
[J]. International Journal of Plasticity,2011,27(5):788-800.


[23]Yao Z, Kim G, Wang Z, et al. Acoustic softening and residual hardening in aluminum: Modeling and experiments
[J]. International Journal of Plasticity, 2012, 39: 75-87.


[24]芦亚萍, 何闻. 振动时效机理及其对疲劳寿命的影响分析
[J]. 农业机械学报,2006,(12):197-200.

Lu Y P, He W. Vibration stress relief mechanism and its impact on fatigue life
[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006,(12):197-200.


[25]潘龙,何闻,顾邦平. 电流脉冲对45碳钢试样位错密度和残余应力的影响
[J]. 材料热处理学报,2015,36(S1):134-138.

Pan L, He W, Gu B P. Effects of electric current pulse on dislocation density and residual stresses of 45 carbon steel workpieces
[J]. Transactions of Materials and Heat Treatment, 2015, 36(S1):134-138.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com