Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of annealing temperature on microstructure and properties for drawn Cu-14Fe alloy
Authors: Guo Wei  Shen Yun  Jiang Jiang  Chen Wei  Lu Deping  Liu Keming  Xu Mengli 
Unit: Jiangxi Academy of Sciences Nanchang Institute of Technology Jiangxi Open University 
KeyWords: Cu-14Fe alloy  drawing  microstructure  mechanical properties  conductivity 
ClassificationCode:TG166;TG359
year,vol(issue):pagenumber:2020,45(12):191-194
Abstract:

In order to study the microstructure of Cu-Fe alloy prepared by drawing and explore the influence law of annealing temperature on the properties of alloy, for Cu-14Fe alloy prepared by means of vacuum melting, the drawing process was conducted with different strains,and the microstructure, mechanical properties and conductivity of the alloy were studied by optical microscope, electronic universal testing machine and digital microhmmeter after annealing treatment at different temperatures. The results show that the drawing deformation makes the distribution of the second phase in the alloy to change from random dendritic morphology in as-cast state to the fiber morphology along the drawing direction. The bigger the processing strain is, the longer the second phase with fiber morphology is, and the more uniform the distribution in Cu matrix is. Furthermore, the tensile strength of the as-drawn alloy is 618 MPa, and the elongation is 21%. When the alloy is annealed at 200 ℃, the tensile strength and elongation change insignificantly. However, as the annealing temperature increases to 550 ℃, the tensile strength gradually decreases to 416 MPa, and the elongation increases to 199%. With the increasing of annealing temperature, the resistivity of alloy gradually decreases.

Funds:
江西省重点研发计划(20202BBEL53026, 20202ZDH02063);国家自然科学基金资助项目(51861025);江西省自然科学基金资助项目(20192BAB206001);江西省科学院重点科研项目(2020-YZD-2, 2017-YZD2-20)
AuthorIntro:
郭炜(1981-),男,博士,副研究员 E-mail:guowei66@sohucom
Reference:


[1]毕彦, 乔靖雯, 马叙, 等. Cu-Cr-Zr合金大功率电动机转子端环的锻造性能分析
[J]. 锻压技术, 2018, 43(9): 14-20.


Bi Y, Qiao J W, Ma X, et al. Forging formability analysis on Cu-Cr-Zr rotor end ring of high power motor
[J]. Forging & Stamping Technology, 2018, 43(9): 14-20.



[2]梁明, 王鹏飞, 徐晓燕, 等. 高强高导Cu-Nb微观复合材料热稳定性
[J]. 稀有金属材料与工程, 2017, 46(2): 382-386.


Liang M, Wang P F, Xu X Y, et al. Thermal stability of high strength and high conductivity Cu-Nb microcomposites
[J]. Rare Metal Materials and Engineering, 2017, 46(2): 382-386.



[3]Wei K X, Wei W, Wang F, et al. Microstructure, mechanical properties and electrical conductivity of industrial Cu-05%Cr alloy processed by severe plastic deformation
[J]. Materials Science and Engineering A, 2011, 528: 1478-1484.



[4]蔡薇, 高鹏哲, 陈辉明, 等. Cu-Cr-Zr-Ti合金高温热变形行为及热加工图
[J]. 金属热处理, 2019, 44(8): 147-154.


Cai W, Gao P Z, Chen H M, et al. High temperature deformation behavior and hot processing map of Cu-Cr-Zr-Ti alloy
[J]. Heat Treatment of Metals, 2019, 44(8): 147-154.



[5]Xia C D, Zhang W, Kang Z Y, et al. High strength and high electrical conductivity Cu-Cr system alloys manufactured by hot rolling-quenching process and thermomechanical treatments
[J]. Materials Science and Engineering A, 2012, 538: 295-301.



[6]Rozhnov A B, Pantsyrny V I, Kraynev A V, et al. Low-cycle bending fatigue and electrical conductivity of high-strength Cu/Nb nanocomposite wires
[J]. International Journal of Fatigue, 2019, 128: 1-8.



[7]王鹏飞, 梁明, 徐晓燕, 等. Cu-Nb多芯复合材料的研究
[J]. 材料导报, 2013, 27(21): 25-30.


Wang P F, Liang M, Xu X Y, et al. Research in Cu-Nb Composites with multi-filaments
[J]. Materials Reports, 2013, 27(21): 25-30.



[8]Zhang B B, Tao N R, Lu K. A high strength and high electrical conductivity bulk Cu-Ag alloy strengthened with nanotwins
[J]. Scripta Materialia, 2017, 1291: 39-43.



[9]李明茂, 张乐清, 王文静. 微量铪对铜及铜铬合金组织及性能的影响
[J]. 金属热处理, 2018,43(8): 23-30.


Li M M, Zhang L Q, Wang W J. Effect of trace hafnium on microstructure and properties of Cu and Cu-Cr alloys
[J]. Heat Treatment of Metals, 2018,43(8): 23-30.



[10]Liu K M, Lu D P, Zhou H T, et al. Influence of a high magnetic field on the microstructure and properties of a Cu-Fe-Ag in situ composite
[J]. Materials Science and Engineering A, 2013, 584:114-120.



[11]尹志民, 宋练鹏, 袁远. 不同处理状态下Cu-25Fe-003P合金的组织与性能演变
[J]. 中国有色金属学报, 2009, 19(11): 1969-1975.


Yin Z M, Song L P, Yuan Y. Structure and properties evolution of Cu-25Fe-003P alloy under different treatment conditions
[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(11): 1969-1975.



[12]Li Y, Yi D Q, Zhang J B. Comparative study of the influence of Ag on the microstructure and mechanical properties of Cu-10Fe in situ composites
[J]. Journal of Alloys and Compounds, 2015, 647: 413-418.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com