Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Microstructure simulation of typical forging process for large shaft forgings
Authors:  
Unit:  
KeyWords: large shaft forgings  microstructure  forging  dynamic recrystallization  numerical simulation 
ClassificationCode:TG142.1+4
year,vol(issue):pagenumber:2021,46(6):33-40
Abstract:

 The free forging process of large forgings has many passes and long production process, and it is impossible to verify the changes in the degree of recrystallization and grain sizes during the forging process through experiments. The 40Mn steel dynamic recrystallization model was established and verified by Gleeble thermal compression experiment. Then, the dynamic recrystallization model was used to simulate the upsetting and stretching of the typical forging process. The results show that after the second pass during stretching, most areas of forging billet occurred complete dynamic recrystallization, and the dynamic recrystallization cycle proceeds as the deformation continuous. After deformation, the average grain size in the center area of forging billet is about 117 μm, and the average grain size gradually decreases from the center to the outside. The average grain size of surface layer is about 50 μm. The average grain size changes sharply near the jaws, and the phenomenon of mixed crystal is easy to appear. The temperature near the surface of forging billet is low along the direction of nozzle, so the next round of dynamic recrystallization begins before the grains have time to grow up, so the average grain size is about 33 μm.

Funds:
国家重点研发计划(2017YFB0701801)
AuthorIntro:
作者简介:孙志仁(1995-),男,博士研究生 E-mail:17888843263@163.com 通信作者:雷丽萍(1968-),女,博士,副研究员 E-mail:leilp@ mail.tsinghua.edu.cn
Reference:

  [1]龙晓东,谭凯,刘猛.大型锻件工艺改进的探究[J].冶金与材料,202040(3)33-35.


 


Long X D, Tan K, Liu M. Research on the improvement of large forging process[J]. Metallurgy & Materials,2020,40(3):33-35.


 


[2]孔得磊,雷丽萍,曾攀.40Mn钢热变形行为及加工图研究[J].锻压技术,201944(3)122-132.


 


Kong D L, Lei L P, Zeng P. Research on hot deformation behavior and processing map for 40Mn steel[J]. Forging & Stamping Technology, 2019, 44(3): 122-132.


 


[3]Ciulik J, Taleff E M. Dynamic abnormal grain growth: A new method to produce single crystals[J]. Scripta Materialia, 2009, 61(9): 895-898.


 


[4]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966,14(9):1136-1138.


 


[5]孙建新,孙鑫,张鹏,等.F92大型阀体锻件锻造工艺优化[J].锻造与冲压,2020(17)20-22.


 


Sun J X, Sun X, Zhang P, et al. Optimization of the forging process of F92 large valve body[J]. Forging & Metalforming, 2020(17):20-22.


 


[6]姚忠波,许四海.风机轴锻造工艺改进[J].一重技术,2020,(6)48-50.


 


Yao Z B, Xu S H. Improved forging technique for wind turbine shafts[J]. CFHI Technology ,2020,(6):48-50.


[7]李新生,王广春,丁明琦,等.芯轴拔长过程中翻转组合对变形均匀性的影响[J].塑性工程学报,202027(8)18-24.


 


Li X S, Wang G C, Ding M Q, et al. Effect of overturning combination on deformation uniformity in mandrel forging process[J]. Journal of Plasticity Engineering, 2020, 27(8):18-24.


 


[8]王恩博.铁素体不完全动态再结晶中晶粒尺寸的预测研究[J].热加工工艺,201241(19)17-19.


 


Wang E B. Forecasting study on grain size in ferrite incomplete dynamic recrystallization[J]. Hot Working Technology,2012,41(19):17-19.


 


[9]张桂福.20钢晶粒超细化工艺研究[J].四川冶金,201840(3)40-43.


 


Zhang G F. Study on the super fine grain technology of steel 20[J]. Sichuan Metallurgy,2018,40(3):40-43.


 


[10]朱百智,李小末,张伟.不同渗碳淬火模式下的18CrNiMo7-6钢晶粒度研究[J].金属加工:热加工,2020,(5)24-27.


 


Zhu B Z, Li X M, Zhang W. Study on grain size of 18CrNiMo7-6 steel under different carburizing and quenching modes[J]. MW Metal Working, 2020, (5): 24-27.


 


[11]谢浩,李锐.淬火温度对不同钴含量中、粗晶粒硬质合金组织与性能的影响[J].硬质合金,201633(3)169-175.


 


Xie H, Li R. Effect of quenching temperature on microstructure and properties of medium and coarse grained cemented carbide[J]. Cemented Carbide, 2016, 33(3): 169-175.


 


[12]丁春园,陈忠家,李赵明,等.高温轧制对AZ31B镁合金组织和性能的影响[J].有色金属加工,202150(2)17-22.


 


Ding C Y, Chen Z J, Li Z M, et al. Effects of high temperature rolling on microstructure and performance of AZ31B magnesium alloy[J]. Nonferrous Metals Processing , 2021, 50(2): 17-22.


 


[13]沈力,温志航,马遥遥,等.镍基高温合金热塑性变形晶粒细化与粗化的博弈关系及演进[J].材料导报,2021,(18)1-13.


 


Shen L, Wen Z H, Ma Y Y, et al. Game relation between grain refinement and grain coarsening in thermoplastic deformation of nickel-based superalloy and its evolution[J]. Materials Review, 2021, (18):1-13.


 


[14]王永善,胡志强,王开坤,等.热作模具钢5CrNiMoV的亚动态再结晶行为研究[J].塑性工程学报,202128(3)118-125.


 


Wang Y S, Hu Z Q, Wang K K, et al. Investigation on meta-dynamic recrystallization behavior of 5CrNiMoV hot-working die steel[J]. Journal of Plasticity Engineering, 2021, 28(3):118-125.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com