Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Forming limit of LF21 aluminum alloy box-shaped part by hydrodynamic deep drawing
Authors: Cui Li Zhang Shuai Zhao Wenhua Du Jianning Rong Xuhui Yuan Jianfu  Zhang Jianmin Lang Lihui 
Unit: Shenyang Aircraft Corporation Tianjin Tianforging Aviation Technology Co.  Ltd.  Beihang University 
KeyWords: hydrodynamic deep drawing  limit drawing ratio  forming limit  LF21 aluminum alloy  finite element analysis 
ClassificationCode:TG359
year,vol(issue):pagenumber:2021,46(11):160-167
Abstract:

 The tensile limit of LF21 (3A21) aluminum alloy material was studied by the comparative test of rigid deep drawing and hydrodynamic deep drawing, and the problem of difficulty in forming deep box-shaped parts was solved. Then, the mechanical properties and forming process of LF21 (3A21) aluminum alloy material were analyzed, and based on the finite element analysis, the drawing experiments were carried out on sheet metal by the experimental equipment. Furthermore, the forming limit diagram (FLC) and sheet metal thinning nephogram of LF21 aluminum alloy thin-walled sheet were obtained by finite element analysis and calculation, and the error of the two was obtained through the obtained nephogram, calculation results and further practical verification. At the same time, the rigid drawing comparison test was conducted, which provided a basis for the final calculation of the drawing ratio of part, which provides reliable technical support and guarantee for the lightweight research of aerospace vehicles. Finally, the limit drawing ratio of a single process of hydrodynamic deep drawing for LF21 aluminum alloy with the thickness of 1.8 mm is 3.32, which provides technical reference for the forming scheme of deep drawing parts of the material.

Funds:
AuthorIntro:
作者简介:崔丽(1982-),女,博士,高级工程师,E-mail:cui1008@acic.com;通信作者:张帅(1995-),男,学士,助理工程师,E-mail:13652095025@139.com
Reference:

 [1]郎利辉, 张士宏, 康达昌, . 板液压成形及无模充流拉深技术[J]. 塑性工程学报, 20029(4): 29-34.


Lang L H, Zhang S H, Kang D C, et al. About sheet hydroforming and hydromechanical deep drawing without draw die[J]. Journal of Plasticity Engineering, 2002,9(4): 29-34.


[2]苑世剑, 刘伟, 徐永超, . 板材液压成形技术与装备新进展[J]. 机械工程学报, 2015, 51(8): 20-28.


Yuan S J, Liu W, Xu Y C, et al. New development on technology and equipment of sheet hydroforming[J]. Journal of Mechanical Engineering, 2015, 51(8): 20-28.


[3]苑世剑. 现代液压成形技术[M]. 北京:国防工业出版社,2009.


Yuan S J. Modern Hydroforming Technology[M]. BeijingNational Defense Industry Press2009.


[4]郎利辉, 李涛, 周贤宾, .先进充液柔性成形技术及其关键参数研究[J].中国机械工程, 2006, 17(S1): 19-22.


Lang L H, Li T, Zhou X B, et al. Investigation into the innovative sheet hydroforming and the effect of key process parameters[J]. China Mechanical Engineering, 2006, 17(S1): 19-22.


[5]Liu X J, Xu Y C, Yuan S J. Formation of aluminummagnesium alloy cup by hydrodynamic deep drawing with twinloading paths[J]. Journal of Wuhan University of Technology, 2009, (2): 193-197.


[6]Xu Y C, Han C, Liu X, et al. Effects of radial pressure on 5A06 aluminum alloy cup hydroforming[J]. Steel Research International, 2010, 81(9): 632-635.


[7]Jeswiet J, Geiger M, Kleiner M, et al. Metal forming progress since 2000[J]. CIRP Journal of Manufacturing Science and Technology, 2008, 1: 2-17.


[8]汪振华, 袁军堂, 胡小秋, . 防锈铝合金LF21的高速铣削试验[J].中国机械工程, 2009, 20(14): 1660-1664.


Wang Z H, Yuan J T, Hu X Q, et al. Experimental study on milling forces in highspeed end milling of LF21 aluminum alloy[J]. China Mechanical Engineering, 2009, 20(14): 1660-1664.


[9]黄巍, 李荻, 郭宝兰, . 防锈铝合金耐氯化钠盐雾腐蚀行为的研究[J]. 材料保护, 2005, (6): 52-54,77.


Huang W, Li D, Guo B L, et al. Corrosion behavior of antirust LF21M aluminum alloy in NaCl salt spray[J]. Materials Protection, 2005, (6): 52-54,77.


[10]熊爱奎. 2B06铝合金板料充液拉伸的研究[A].“装备中国”2016滨海杯高端装备工业设计大赛论文集[C]. 天津, 2016.


Xiong A K. Study on the liquid filled drawing of 2B06 aluminum alloy sheet [A]. Proceedings of 2016 Binhai Cup High End Equipment Industrial Design Competition of “Equipment China”[C]. Tianjin, 2016.


[11]杨踊, 孙淑铎, 刘慧茹, . 航空发动机复杂型面罩子钣充液成形技术[J]. 航空制造技术, 2010,(1): 91-94,99.


Yang YSun S D, Liu H R, et al. Hydro forming technology of complex profi le cover sheet of aeroengine[J]. Aeronautical Manufacturing Technology, 2010, (1): 91-94,99.


[12]丁少行, 郎利辉, 黄磊. 2024铝合金难成形高锥盒形件充液成形数值模拟[J].精密成形工程, 2014, 6(3): 31-35,40.


Ding S H, Lang L H, Huang L. Simulation research on hydroforming of hard forming deep tapershaped part of 2024 aluminum alloy[J]. Journal of Netshape Forming Engineering, 2014, 6(3): 31-35,40.


[13]Wei D B, Luo L, Hideki S, et al. Simulations of hydromechanical deep drawing using Voronoi model and real microstructure model[J]. Procedia Engineering, 2017,207: 1033-1038.


[14]Ling J, Li H G, Tao J, et al. Hydromechanical deep drawing simulation and preparation of novel AlLi alloy irregular cups[J]. Advanced Materials Research, 2015, 3797: 337-340.


[15]陈林, 熊爱奎, 王英杰, . 航空发动机高锥体零件充液成形工艺[J]. 锻压技术, 2020, 45(7): 72-76.


Chen LXiong A K, Wang Y J, et al. Hydroforming technology of high cone parts for aeroengine[J]. Forging & Stamping Technology, 2020, 45(7): 72-76.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com