Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of RE on tensile and impact properties for hot rolled steel SA516Gr70 by vacuum induction melting
Authors: Wu Lifan  Li Tao 
Unit: Baotou Iron & Steel Polytechnic  Inner Mongolia University of Science and Technology 
KeyWords: rare earth element  SA516Gr70 steel  tensile property  impact property  mechanical property 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2021,46(11):255-259
Abstract:

 In order to improve the mechanical properties of structural steel SA516Gr70, its mechanical strength was improved by adding rare earth element RE (the mass fractions of 0%, 0.006% and 0.012%), and the differences in tensile and impact properties of steel specimens prepared under three groups of different conditions were compared by means of experimental test. The results show that the ferrite and pearlite are the main components in the samples. After RE is added, more equiaxed grain structures are formed in the central region, which reduces the grain size and improves the mechanical strength of SA516Gr70 steel, and RE-type inclusions can become heterogeneous nucleation points of α-Fe phase to produce SA516Gr70 steel composed of finer grains. In addition, adding RE into steel can make SA516Gr70 steel obtain higher tensile strength and impact resistance. When the amount of RE is added to 0.012%, the tensile strength and yield strength of steel increase to 592 and 516 MPa respectively, and the impact absorption energies increase by 8.3% at -40 ℃ and 13.8% at -60 ℃. With the increasing of RE, the depth of fracture dimple also increases significantly, which shows obvious ductile fracture to result in obvious plastic deformation.

Funds:
内蒙古自然科学基金资助项目(2019MS05054)
AuthorIntro:
作者简介:吴立凡(1974-),女,硕士,高级讲师,E-mail:wulifan20909@163.com
Reference:

 [1]陈本强, 徐琛, 汪贺模. SA516Gr70抗酸钢夹杂物控制的实践[J]. 炼钢, 2019, 35(4): 66-70.


Chen B Q, Xu C, Wang H M. Practice of controlling the inclusion of SA516Gr70 acid resistant steel [J]. Steelmaking, 2019, 35 (4): 66-70.


[2]Gao J Z, Fu P X, Liu H W, et al. Effects of rare earth on the microstructure and impact toughness of H13 steel[J]. MetalsOpen Access Metallurgy Journal, 2015, 5(1): 383-394.


[3]Zhang S H, Yu Y C, Wang S B, et al. Effects of cerium addition on solidification structure and mechanical properties of 434 ferritic stainless steel[J]. Journal of Rare Earths, 2017, 35(5): 518-524.


[4]杨吉春, 曹晓恩, 杨昌桥, . 稀土 Ce X80 钢低温冲击韧性的影响[J]. 稀土, 2013, 34(2): 1-5.


Yang J C, Cao X E, Yang C Q, et al. Effect of Ce on low temperature impact toughness of X80 steel [J]. Chinese Rare Earths, 2013, 34(2): 1-5.


[5]Liu Y Q, Wang L J, Chou K C. Effect of cerium on the cleanliness of spring steel used in fastener of highspeed railway[J]. Journal of Rare Earths, 2014, 32(8): 759-766.


[6]周情耀, 秦镜, 刘德福, . 稀土Y6.5%Si高硅钢热轧和温轧组织织构演变的影响[J]. 钢铁研究学报, 2021, 33(7): 600-609.


Zhou Q Y, Qin J, Liu D F, et al. Effects of rare earth Y on microstructure and texture evolution of 6.5 wt.% Si highsilicon steel during hot and warm rolling[J]. Journal of Iron and Steel Research, 2021, 33(7): 600-609.


[7]李双喜, 陈琳, 汪美桃, . 预氧化+稀土铈对42CrMo钢离子渗氮的影响[J]. 金属热处理, 2021, 46(5): 186-189.


Li S X, Chen L, Wang M T, et al. Effect of preoxidation and rare earth cerium on plasma nitriding of 42CrMo steel[J]. Heat Treatment of Metals, 2021, 46(5): 186-189.


[8]Milyuts V G, Tsukanov V V, Malykhina O Y, et al. Effect of complex inoculation of a highstrength shipbuilding steel on the composition and morphology of nonmetallic inclusions[J]. Inorganic Materials Applied Research, 2014, 5(6): 554-561.


[9]赵梦静, 王峰, 习小军, . 钇对EH36船板钢夹杂物特性和拉伸性能的影响[J]. 钢铁, 2019, 54(7): 61-67.


Zhao M J, Wang F, Xi X J, et al. Effect of Y on inclusions characteristics and tensile properties in EH36 shipbuilding steel[J]. Iron and Steel, 2019, 54(7): 61-67.


[10]Jiang M Z, Yu Y C, Li H, et al. Effect of rare earth cerium addition on microstructures and mechanical properties of low carbon high manganese steels[J]. High Temperature Materials and Processes, 2017, 36(2): 145-153.


[11]韩二锋, 黄瑞, 刘杨. B对发动机用真空感应熔炼GH600合金凝固组织和力学性能的影响[J]. 真空科学与技术学报, 2020, 40(2): 153-157.


Han E F, Huang R, Liu Y. Impact of Bdoping on microstructures and reinforcement of solidified GH600 alloy melted by vacuum induction [J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(2): 153-157.


[12]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1—2010,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].


[13]GB/T 229—2007,金属材料夏比摆锤冲击实验方法[S].


GB/T 229—2007 Metallic materials—Method of test for charpy pendulum impact[S].


[14]朱兴元, 曾静, 刘继雄, . 稀土在低硫铌钛钢中的作用[J]. 中国稀土学报, 2002, 20(2): 182-185.


Zhu X Y, Zeng J, Liu J X, et al. Behaviour of rare earths in low sulphur NbTibearing steel[J]. Journal of the Chinese Society of Rare Earths, 2002, 20(2): 182-185.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com