Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of surface mechanical attrition on surface nanocrystallization and properties for 5052 aluminum alloy
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG156;TG146.22
year,vol(issue):pagenumber:2022,47(1):209-215
Abstract:

 The influences of surface mechanical attrition treatment (SMAT) on microstructure, phase composition, hardness and tensile properties of 5052 aluminum alloy in traditional rolling and continuous casting and rolling were investigated. The results show that the grain size (7 μm) of 5052 aluminum alloy in continuous casting and rolling before SMAT is smaller than that (13 μm) of 5052 aluminum alloy in traditional rolling, and the fine grain size gradient distribution is formed in the surface layer of 5052 aluminum alloy in traditional rolling and continuous casting and rolling after SMAT. The core hardness and surface hardness of 5052 aluminum alloy after SMAT by traditional rolling and continuous casting and rolling both increase to varying degrees. After 5.0 min of SMAT, the core hardness of 5052 aluminum alloy reaches 89 and 91 HV respectively, and the surface hardness is basically the same (about 102 HV). Furthermore, the tensile strength and elongation after fracture of 5052 aluminum alloy in continuous casting and rolling are higher than those of 5052 aluminum alloy in traditional rolling under the same SMAT time. When the SMAT time increases to 1.0 min or more, the tensile strength of 5052 aluminum alloy by traditional rolling and continuous casting and rolling is significantly improved, and the elongation after fracture is slightly reduced, which is mainly related to the formation of a certain thickness for work hardening and fine-grain strengthening layer in the surface layer after SMAT.

Funds:
AuthorIntro:
作者简介:王荣华(1981-),女,硕士,副教授 E-mail:wrh359@126.com
Reference:

 [1]   俞燕明,饶锡新,刘勇,等.有色金属及合金表面机械研磨处理的研究进展[J].热加工工艺, 2016, 45(6): 36-41.


Yu Y M, Rao X X, Liu Y, et al. Research progress of surface mechanical grinding of non-ferrous metals and alloys [J]. Hot Working Technology, 2016, 45(6): 36-41.

[2]   蔡辉.5052铝合金材料研究进展[J].铝加工,2011,(6):33-39.

Cai H. Research progress of 5052 aluminum alloy materials [J]. Aluminium Fabrication, 2011,(6): 33-39.

[3]   刘勇,耿会程,朱彬,等.高强铝合金高效热冲压工艺研究进展[J].锻压技术,2020,45(7):1-12.

Liu Y, Geng H C, Zhu B, et al. Research progress of high efficiency hot stamping process for high strength aluminum alloy [J]. Forging & Stamping Technology, 2020, 45(7): 1-12.

[4]   田鹏,刘宝胜,陈福龙,等.5A06铝合金端板构件成形工艺优化[J].锻压技术,2020,45(4):76-86.

Tian P, Liu B S, Chen F L, et al. Optimization of forming process for 5A06 aluminum alloy end plate components [J]. Forging & Stamping Technology, 2020, 45(4): 76-86.

[5]   王春明,杨牧南,黄建辉,等. 镁合金表面自纳米化研究进展及现状[J].材料导报,2019,33(13):2260-2265.

Wang C M, Yang M N, Huang J H, et al. Research progress and current situation of surface self nanocrystallization of magnesium alloys [J]. Materials Review, 2019, 33(13): 2260-2265.

[6]   康燕平,李元东,王晓东,等. 镁、铝合金表面自纳米化研究现状[J].材料导报,2011,25(23):20-24.

Kang Y P, Li Y D, Wang X D, et al. Research status of surface self nanocrystallization of magnesium and aluminum alloys [J]. Materials Review, 2011, 25(23): 20-24.

[7]   赵海涛,刘超.时效时间对表面机械研磨处理Cu-4.5Ti合金组织和硬度的影响[J].粉末冶金技术,2020,38(2):92-97.   

Zhao H T, Liu C. Effect of aging time on microstructure and hardness of Cu-4.5Ti alloy after surface mechanical grinding [J]. Powder Metallurgy Technology, 2020, 38(2): 92-97.

[8]   范淇元,覃羡烘.表面机械研磨对AZ31镁合金显微组织和性能的影响[J].热加工工艺,2019,48(18):108-110.

Fan Q Y, Qin X Y. Effect of surface mechanical grinding on microstructure and properties of AZ31 magnesium alloy [J]. Hot Working Technology, 2019, 48(18): 108-110.

[9]   Zhang Y L, Yang C, Zhou D S, et al. Effect of stacking fault energy on microstructural feature and back stress hardening in Cu-Al alloys subjected to surface mechanical attrition treatment[J]. Materials Science and Engineering:A,2019, 740-741:235-242.         

[10]袁建梁,刘泽鹏,闫志峰,等.超声表面机械研磨处理对6061铝合金FSW接头疲劳行为的影响[J].焊接,2019,(7):34-39.

Yuan J L, Liu Z P, Yan Z F, et al. Effect of ultrasonic surface mechanical polishing on fatigue behavior of 6061 aluminum alloy FSW joint [J]. Welding, 2019, (7): 34-39.

[11]赵重阳,宁江利,徐博,等.AZ31镁合金在表面机械研磨过程中组织的演变[J].轻合金加工技术,2019,47(3):42-47.   

Zhao C Y, Ning J L, Xu B, et al. Microstructure evolution of AZ31 magnesium alloy during surface mechanical grinding [J]. Light Alloy Fabrication Technology, 2019,47(3): 42-47.

[12]Eidivandi S, Boroujeny B S, Dustmohammadi A, et al. The effect of surface mechanical attrition treatment (SMAT) time on the crystal structure and electrochemical behavior of phosphate coatings [J]. Journal of Alloys and Compounds, 2020, 821:153252-153260.

[13]Meng X, Liu B, Luo L, et al. The Portevin-Le Chatelier effect of gradient nanostructured 5182 aluminum alloy by surface mechanical attrition treatment [J]. Journal of Materials Science & Technology, 2018, 34(12): 2307-2315.

[14]徐颖宣,孟祥晨,李根,等.表面机械研磨处理5182铝合金的组织和力学性能研究[J].中国材料进展, 2017, 36(2): 122-125.

Xu Y X, Meng X C, Li G, et al. Study on microstructure and mechanical properties of 5182 aluminum alloy by surface mechanical grinding [J]. Rare Metals Letters, 2017, 36(2): 122-125.

[15]Gao T, Sun Z, Xue H, et al. Effect of surface mechanical attrition treatment on high cycle and very high cycle fatigue of a 7075-T6 aluminium alloy [J]. International Journal of Fatigue, 2020, 139: 105798-105804.

[16]Zhang Z, Li Y, Peng J, et al. Combining surface mechanical attrition treatment with friction stir processing to optimize the mechanical properties of a magnesium alloy[J]. Materials ence and Engineering, 2019, 756(22):184-189.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com