Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Dead zone compensation strategy and simulation of control characteristics for electro-hydraulic servo valve with differential pressure feedback
Authors: Liang Qiang  Liu Fang Liu Hongliang Hu Dongfang  Li Qing 
Unit: Xinxiang Vocational and Technical College Henan University of Science and Technology  Zhengzhou Machinery Design and Research Institute Co.  Ltd.  
KeyWords: electro-hydraulic servo valve  compensation of dead zone  pressure feedback  control chracteristics proportional gain 
ClassificationCode:TH137
year,vol(issue):pagenumber:2022,47(2):158-161
Abstract:

 Aiming at the non-linear flow problem caused by dead zone of electro-hydraulic servo valve without spool displacement, based on the analysis of the dead zone model of electro-hydraulic servo valve, a compensation model for the dead zone of electro-hydraulic servo valve with differential pressure feedback was designed to achieve the compensation function of dead zone without displacement feedback. Then, the simulation  compensation voltage signal was added to the control system of electro-hydraulic servo valve, and the flow rate of proportional flow valve was rapidly compensated by setting the “voltage-flow” slope of the proportional flow valve in different changing stages. According to the difference of the dead zone for electro-hydraulic servo valve under different inlet and outlet differential pressure, the compensation analysis for the dead zone of electro-hydraulic servo valve was carried out. The simulation results show that under the static control characteristics, when the inlet and outlet differential pressure rises from 2 MPa to 6 MPa, the spool displacement decreases by nearly 0.1 mm (maximum), and the flow dead zone shrinks by about 2%. However, under the dynamic control characteristics, the proposed compensation method reduces the dead zone of electro-hydraulic servo valve to 3%, and the compensation method is completely feasible.

Funds:
河南基础科研基金资助项目(51571084)
AuthorIntro:
作者简介:梁强(1985-),男,学士,讲师,E-mail:xzy13784933322@163.com
Reference:

 [1]牛勇, 权晓惠, 张营杰. 径向锻造油压机电液伺服控制系统建模与仿真[J]. 锻压技术, 2020, 45(2): 144-152.


Niu Y, Quan X H, Zhang Y J. Modeling and simulation on electro-hydraulic servo control system for radial forging hydraulic press [J].Forging & Stamping Technology, 2020, 45(2): 144-152.


[2]王灏, 黄家海, 权龙, . 基于双线性插值控制策略的比例流量阀特性研究[J]. 机械工程学报, 2018, 54(20): 287-296.


Wang H, Huang J H, Quan L, et al. Characteristics of proportional flow valve based on bilinear interpolation control strategy [J].Journal of Mechanical Engineering, 2018, 54(20): 287-296.


[3]符耀民, 罗卫东, 贺迪华, . 插座阀芯关闭过程内部流场数值模拟研究[J]. 机械设计与制造, 2020(9): 144-148.


Fu Y M, Luo W D, He D H, et al. Numerical simulation of internal flow field in shut-off process of the socket valve core [J]. Machinery Design & Manufacture, 2020(9): 144-148.


[4]宋昭, 刘震洲, 石明礼, . 基于积分分离PID神经元网络的电液位置同步控制算法[J]. 锻压技术, 2020, 45(5): 167-170.


Song Z, Liu Z Z, Shi M L, et al. Electro-hydraulic position synchronization control algorithm on integral separation PID neural network [J].Forging & Stamping Technology, 2020, 45(5): 167-170.


[5]王海民, 胡峰, 陈睿池, . 汽轮机高压旁路翼型阀芯调节阀调节特性[J]. 流体机械, 2020, 48(6): 44-50.


Wang H M, Hu F, Chen R C, et al. Regulation characteristics of high-pressure bypass valve with airfoil-shaped spool for steam turbine [J]. Fluid Machinery, 2020, 48(6): 44-50.


[6]Huang J H, Dai J J, Quan L, et al. Performance of proportional flow valve with pilot pressure drop-spool opening compensation [J]. Journal of Dynamic Systems, Measurement & Control, 2017, 1391: 011009.


[7]王慧, 侯冬冬. 电液伺服系统位置跟踪平整度控制策略研究[J]. 液压与气动, 2019(7): 107-113.


Wang H, Hou D D. Research on flatness based controller for position tracking control of electro-hydraulic servo system [J]. Chinese Hydraulics & Pneumatics, 2019(7): 107-113.


[8]白俊, 赵斌, 郝云晓, . 基于阀芯结构优化的比例阀液动力补偿方法研究[J]. 机电工程, 2021, 38(11): 1444-1450.


Bai J, Zhao B, Hao Y X, et al. Hydrodynamic compensation method of proportional valve based on valve spool structure optimization [J]. Mechanical & Electrical Engineering, 2021, 38(11): 1444-1450.


[9]程相, 郑悫, 左哲清, . 滑阀中位线性补偿技术研究[J]. 液压与气动, 2020(6): 141-145.


Cheng X, Zheng Q, Zuo Z Q, et al. Technology of linear compensation for the middle position of slide valve[J]. Chinese Hydraulics & Pneumatics, 2020,(6): 141-145.


[10]Li H, Huang Y, Zhu G M, et al. Adaptive LQT valve timing control for an electro-hydraulic variable valve actuator[J]. IEEE Transactions on Control Systems Technology, 2018, 27(5): 2182-2194.


[11]Huang J H, Wang X N, Wang H, et al. Development of a flow control valve with digital flow compensator [J]. Flow Measurement and Instrumentation, 2019, 66(7): 157-169.


[12]王立新, 赵丁选, 刘福才, . 电液比例伺服力加载自抗扰控制[J]. 机械工程学报, 2020, 56(18): 216-225.


Wang L X, Zhao D X, Liu F C, et al. Active disturbance rejection control for electro-hydraulic proportional servo force loading [J].Journal of Mechanical Engineering, 2020, 56(18): 216-225.


[13]毛玺, 聂少武, 李阁强, . 直驱式电液伺服模锻锤控制系统AMESim仿真及控制研究[J]. 锻压技术, 2020, 45(8): 141-149.


Mao X, Nie S W, Li G Q, et al. Research on AMESim simulation and control for direct drive electro-hydraulic servo die forging hammer control system [J].Forging & Stamping Technology, 2020, 45(8): 141-149.


[14]陈革新, 赵鹏辉, 刘小胜, . 电液伺服闭式泵控系统位置前馈补偿控制研究[J]. 液压与气动, 2019,(12): 28-32.


Chen G X, Zhao P H, Liu X S, et al. Position feedforward compensation control of electro-hydraulic servo closed pump control system [J].Chinese Hydraulics & Pneumatics, 2019(12): 28-32.


[15]刘胜斐, 孙青林, 陈增强, . 比例阀控电液系统抗扰换向滞后补偿反步控制[J]. 控制理论与应用, 2020, 37(7): 1521-1534.


Liu S F, Sun Q L, Chen Z Q, et al. Switch delay compensation and disturbance rejection control for proportional valve controlled electro-hydraulic system with backstepping method[J].Control Theory & Applications, 2020, 37(7): 1521-1534.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com