Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Fuzzy-PID control on active rectify deviation system for multi-cylinder driving hydraulic machine
Authors: Wang Zhineng  Liu Heng Dong Chufeng 
Unit: School of Mechanical Engineering  Hunan University of Science and Technology 
KeyWords: multi-cylinder  hydraulic machine  rectify deviation  fuzzy PID control  mathematical model 
ClassificationCode:
year,vol(issue):pagenumber:2022,47(3):137-141
Abstract:

 The rectify deviation performance of multi-cylinder driving hydraulic machine directly determines the processing quality of forgings. Due to the influences of factors such as time log of hydraulic system, coupling characteristics between multiple cylinders and complex eccentric moments, the movable crossbeam of the hydraulic machine is prone to deflection. Therefore, considering the above problems, a mathematical model for the rectify deviation process of the multi-cylinder driving hydraulic machine was established according to the force balance and the moment balance of the movable beam, and taking the extension of hydraulic cylinder as the control variable and the deflection angle as the objective function, the fuzzy control rule table of the rectify deviation system was proposed, and the fuzzy PID control method with strong adaptability was formed. Simulation results show that under the action of fuzzy PID control, the steady-state inclination of the movable crossbeam is 0.2×10-3 rad under the uniform load, and it can quickly return to the equilibrium position within 4.2 s under the pulse load. In all, this method can achieve high-precision rectify deviation with fast response speed and high steady-state accuracy.

 

Funds:
湖南科技大学博士科研启动基金资助项目(E52055);湖南省自然科学基金资助项目(2020JJ5184)
AuthorIntro:
汪志能(1988-),男,博士,讲师 E-mail:873866634@qq.com
Reference:

 [1]Li D, Fu X, Zuo Z, et al. Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems-A review[J]. Renewable and Sustainable Energy Reviews, 2019, 101:26-46.


 


[2]Li L, Huang H, Zhao F, et al. An energy-saving method by balancing the load of operations for hydraulic press[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(6): 2673-2683.


 


[3]袁海伦, 史宇麟,王康.万吨级锻造液压机工艺体系的建立[J].锻造与冲压,2021(1):77-80.


 


Yuan H L, Shi Y L, Wang K. The form of the forging process system for the over 10000-ton hydraulic forging press[J]. Forging & Metalforming, 2021(1):77-80.


 


[4]李栓柱, 李登攀,李灿.基于免疫神经网络的双缸液压机同步PID控制[J].机械工程师,2019(2):139-142.


 


Li S Z, Li D P, Li C. Double-cylinder hydraulic press synchronous PID control based on immune neutral network algorithm[J].Mechanical Engineer,2019(2):139-142.


 


[5]谢金晶, 黄明辉,陆新江.大型模锻压机驱动系统的分层控制策略[J].中南大学学报:自然科学版,2014,45(5):1463-1468.


 


Xie J J, Huang M H, Lu X J. Hierarchical control strategy of large forging equipment drive system[J]. Journal of Central South University :Science and Technology,2014,45(5):1463-1468.


 


[6]田英, 佘阳,王兴波.四柱式液压机双缸“串并联”同步控制结构研究[J].液压与气动,2021(1):20-26.


 


Tian Y, She Y, Wang X B. Series parallel synchronous control structure of four column hydraulic press[J].Chinese Hydraulics & Pneumatics,2021(1):20-26.


 


[7]李胜永. 锻造液压机双缸同步控制系统研究[J].液压与气动,2020(7):99-105.


 


Li S Y. Research on the synchronous control system of two cylinders for forging hydraulic press[J].Chinese Hydraulics & Pneumatics,2020(7):99-105.


 


[8]刘忠伟, 汤迎红,邓英剑.巨型模锻液压机驱动与同步过程联合控制的研究[J].机械科学与技术,2016,35(4):514-522.


 


Liu Z W, Tang Y H, Deng Y J. Research on joint control of combined drivers with synchronization for giant forging hydraulic press[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(4):514-522.


 


[9]杨继东, 车海伟,刘昆.大型模锻压机多液压缸同步控制系统的研究[J].机床与液压,2015,43(14):85-87.


 


Yang J D, Che H W, Liu K. Research on large forging presses multi-cylinder synchronous control system[J].Machine Tool & Hydraulics,2015,43(14):85-87.


 


[10]Kouba N E Y, Menaa M, Hasni M, et al. A new robust fuzzy-PID controller design using gravitational search algorithm[J]. International Journal of Computer Aided Engineering and Technology, 2019, 11(3):331-352.


 


[11]Hussien A A, Marie M J, Gaeid K S. Effect of fuzzy PID controller on feedback control systems based on wireless sensor network[J]. International Journal of Electrical and Computer Engineering, 2020, 10(3):2416-2425.


 


[12]Tian Y, Cao Z, Hu D, et al. A fuzzy PID-controlled iterative calderons method for binary distribution in electrical capacitance tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-11.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com